How important is corporate governance? Evidence from machine learning

Ian Gow¹ David Larcker² Anastasia Zakolyukina³

¹University of Melbourne

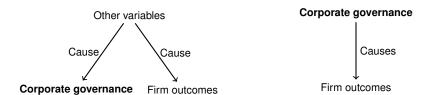
²Stanford Graduate School of Business

³University of Chicago Booth School of Business

Gow, Larcker, Zakolyukina How important is corporate governance?

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Two views on governance research


Governance is an endogenous choice

Governance is "out-of-equilibrium"

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sar

Gow, Larcker, Zakolyukina How important is corporate governance?

Causal claims

- To infer causality, research often uses observational data¹ "There is some evidence, both in our sample and from other authors, that weak shareholder rights caused poor performance in the 1990s."
- ... controls for firm characteristics

"While our sample does not include a natural experiment to **identify G** as the cause of operational differences, we attempt to control for 'expected' cross-sectional differences"

... causal stories loaded with cautionary language
"Since this is an experiment without random assignment, no analysis of causality can be conclusive"

¹Quotes from Gompers et al. (2003)

Mixed results: Board independence

- Increases firm value (Rosenstein and Wyatt, 1990)
- Decrease firm performance (Agrawal and Knoeber, 1996)
- ▶ No relation (e.g., Hermalin and Weisbach, 2003)
- Subsequent research has refined analysis
 - social ties to CEOs (e.g., Hwang and Kim, 2009)
 - prior favorable views of the firm (e.g, Cohen et al., 2012)
 - connections to CEOs (e.g., Fracassi and Tate, 2012)
 - cost of information (Duchin et al., 2010)

This paper

Measurement and prediction

 Paper is intellectual descendant of Larcker, Richardson, and Tuna (2007) and Daines, Gow, and Larcker (2010)

Casual effects

- Re-evaluate broad research approach on its own terms
- Takes results at face value and puts aside endogeneity
- If causality holds, causal relations should also be predictive

Out-of-sample prediction via machine learning

- Flexible measure of corporate governance
- Exploit the link between explanation and prediction
 - Causal explanation must also be predictive on new data
 - E.g., Hempel and Oppenheim (1948), Freedman (1991), Manski (2009), Watts (2014), Yarkoni and Westfall (2017), Hofman et al. (2017)
- Evaluate upper bound of predictability for firm outcomes

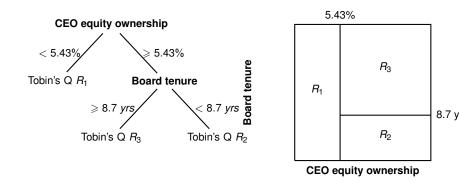
Prediction benchmarks

- Uninformed baseline, i.e., an average outcome
- ► Firm-characteristics-only models
- Firm- and corporate-governance-characteristics models

Data sources

- FactSet's SharkRepellent for takeover defences
- WhaleWisdom for institutional holdings
- Equilar for compensation and board structure
- AuditAnalytics for litigation and bankruptcies
- CRSP and Compustat for firm characteristics

Over a hundred of governance features


- Institutional investor holdings
- Anti-takeover provisions
- Executive compensation
- Board's financial expertise
- Board characteristics

Prediction models

Boosted regression trees (Friedman, 2001)

- Rolling cross-validation for tree depth and model size
 - depth (highest level of interactions) {1,2,3,5,7}
 - shrinkage 0.01
 - maximum number of trees 50,000
- Last three years as a test sample
- ► Use features at *t* to predict outcomes at *t* + 1 or *t* + 3

Boosting with trees

Gow, Larcker, Zakolyukina How important is corporate governance?

イロト 不同 トイヨト イヨト

ъ

Models for restatements

		<i>t</i> + 1				
Model	Obs.	Tree depth	Trees	Error		
	Mode	Models with firm characteristics				
Firm	31,872	5	160	0.221		
Firm, All govern.	31,872	7	215	0.213		
	Model	Models without firm characteristics				
Inst. hold.	31,872	7	365	0.244		
Anti-takeover	31,872	7	190	0.247		
Comp.	31,872	2	900	0.229		
Fin. expert	31,872	3	405	0.240		
Board	31,872	3	1,490	0.228		
All govern.	31,872	2	1,120	0.221		

Gow, Larcker, Zakolyukina

How important is corporate governance?

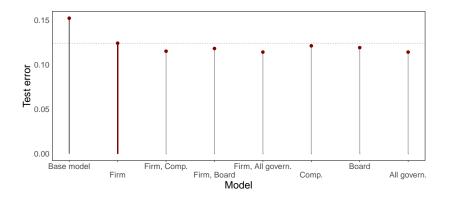
◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 ・ 今 Q @

Models for return on assets, adj.

	<i>t</i> + 1				
Model	Obs.	Tree depth	Trees	Error	
	Models with firm characteristics				
Firm	37,345	3	1,050	0.086	
Firm, All govern.	37,345	3	1,380	0.086	
	Models without firm characteristics				
Inst. hold.	37,345	1	2,350	0.159	
Anti-takeover	37,345	5	660	0.167	
Comp.	37,345	7	9,700	0.148	
Fin. expert	37,345	2	640	0.166	
Board	37,345	7	23,500	0.149	
All govern.	37,345	7	42,700	0.138	

Gow, Larcker, Zakolyukina

How important is corporate governance?

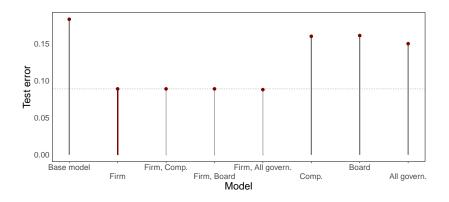

Models for S&P credit rating

		<i>t</i> + 1			
Model	Obs.	Tree depth	Trees	Error	
	Models with firm characteristics				
Firm	12,969	7	5,100	0.562	
Firm, All govern.	12,969	7	20,650	0.486	
	Models without firm characteristics				
Inst. hold.	12,969	5	590	0.969	
Anti-takeover	12,969	5	3,550	1.057	
Comp.	12,969	7	12,000	0.723	
Fin. expert	12,969	2	1,170	0.959	
Board	12,969	7	37,850	0.686	
All govern.	12,969	7	40,850	0.618	

Gow, Larcker, Zakolyukina

How important is corporate governance?

Test errors for restatements

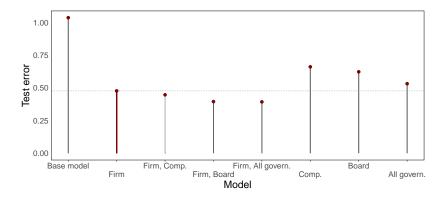


No statistically significant improvements over firm characteristics only

Gow, Larcker, Zakolyukina How important is corporate governance?

イロト 不得 とくほと くほとう

Test errors for return on assets, adj.

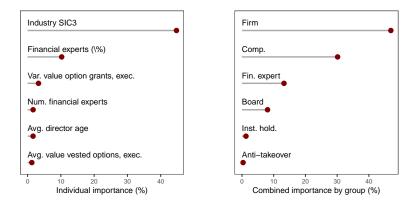


Governance only worse than firm characteristics only

Gow, Larcker, Zakolyukina How important is corporate governance?

イロト イボト イヨト イヨト 二日

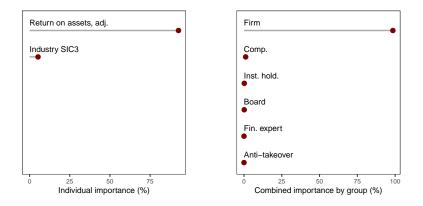
Test errors for S&P credit rating


- Board characteristics do provide a meaningful improvement
- S&P evaluates governance of a firm as part of its process

Gow, Larcker, Zakolyukina

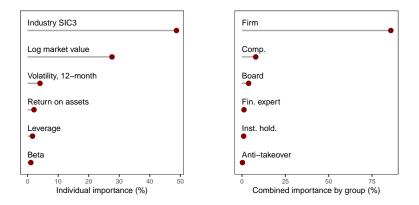
How important is corporate governance?

イロト 不同 トイヨト イヨト


Variable importance for restatements

Gow, Larcker, Zakolyukina

How important is corporate governance?


Variable importance for return on assets, adj.

Gow, Larcker, Zakolyukina

How important is corporate governance?

Variable importance for S&P credit rating

Gow, Larcker, Zakolyukina

How important is corporate governance?

Re-examination of Duchin et al. (2010)

- Re-examine credible instrumental-variable analyses
- Consider intention-to-treat specification
- Does random assignment to different treatments predict firm outcomes incremental to controls?

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

Re-examination of Duchin et al. (2010)

	ΔROA	$\Delta ln(Q)$	Mean return
Noncomply dummy	2.573*	11.575*	0.613***
	(1.422)	(6.225)	(0.197)
InfoCost	-3.639*	-41.892***	-0.660**
	(2.112)	(8.435)	(0.279)
Noncomply dummy \times InfoCost	-5.596* (2.973)	-31.487** (12.144) 	-1.109** (0.420)
Observations	897	905	805
R ²	0.139	0.414	0.365
Adjusted R ²	0.085	0.378	0.321

- Intention-to-treat analyses
- Noncomply dummy is a firm being not in compliance with SOX in 2000
- InfoCost is an information cost index
- $\Delta X = X_{2005} X_{2000}$

How important is corporate governance?

(日) (四) (三) (三) (三) (三) (○) (○)

Re-examination of Duchin et al. (2010)

Y	Base MSE	MSE without IV	MSE with IV	MSE decrease	p-value
Δln(Q)	1905.784	1285.532	1280.694	4.838	0.200
ΔROA	60.229	56.418	56.538	-0.120	0.632
Mean return	1.304	0.978	0.978	0.000	0.502

- Base MSE only industry dummies
- MSE without IV control variables, industry dummies, and InfoCost
- MSE with IV adds the exogenous shifter Noncomply dummy
- *p-value* obtained via randomization inference

What do we learn (1)

- Causality should result in out-of-sample predictive ability
- If no predictive ability, causality is unlikely
 - But prediction focuses on bias-variance tradeoff
 - Causal effect of omitted variables is weak
 - No loss if most of the inf. is already in included variables

What do we learn (2)

Null results are easy to find

... but firm features still predict outcomes

Governance matters in special cases

... but ML allows for firm-governance-features interactions

Inf. in governance is subsumed by firm features

... but test against different firm features

Conclusions

- Corporate governance features do not improve on predictive ability over firm features
- No support for the existence of a strong causal effect of corporate governance on firm outcomes
- Cannot rule out that information in firm features (partially) subsumes information in corporate governance

How important is corporate governance?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶

Gow, Larcker, Zakolyukina

References I

- Agrawal, Anup and Charles R Knoeber (1996). "Firm performance and mechanisms to control agency problems between managers and shareholders". In: *Journal of Financial and Quantitative Analysis* 31.3, pp. 377–397.
- Cohen, Lauren, Andrea Frazzini, and Christopher J Malloy (2012). "Hiring cheerleaders: Board appointments of "independent" directors". In: *Management Science* 58.6, pp. 1039–1058.
- Daines, Robert M, Ian D Gow, and David F Larcker (2010). "Rating the ratings: How good are commercial governance ratings?" In: *Journal of Financial Economics* 98.3, pp. 439–461.
- Duchin, Ran, John G Matsusaka, and Oguzhan Ozbas (2010). "When are outside directors effective?" In: *Journal of Financial Economics* 96.2, pp. 195–214.
- Fracassi, Cesare and Geoffrey Tate (2012). "External networking and internal firm governance". In: *Journal of Finance* 67.1, pp. 153–194.
- Freedman, David A (1991). "Statistical models and shoe leather". In: *Sociological Methodology*, pp. 291–313.
- Friedman, Jerome H (2001). "Greedy function approximation: A gradient boosting machine". In: *Annals of Statistics*, pp. 1189–1232.
- Gompers, Paul, Joy Ishii, and Andrew Metrick (2003). "Corporate governance and equity prices". In: *Quarterly Journal of Economics* 118.1, pp. 107–156.
- Hempel, Carl G and Paul Oppenheim (1948). "Studies in the Logic of Explanation". In: *Philosophy of Science* 15.2, pp. 135–175.

References II

- Hermalin, Benjamin and Michael Weisbach (2003). "Boards of directors as an endogenously determined institution: A survey of the economic literature". In: *Economic Policy Review* 9.Apr, pp. 7–26.
- Hofman, Jake M, Amit Sharma, and Duncan J Watts (2017). "Prediction and explanation in social systems". In: *Science* 355.6324, pp. 486–488.
- Hwang, Byoung-Hyoun and Seoyoung Kim (2009). "It pays to have friends". In: *Journal* of Financial Economics 93.1, pp. 138–158.
- Larcker, David F., Scott A. Richardson, and IËrem Tuna (2007). "Corporate governance, accounting outcomes, and organizational performance". In: *The Accounting Review* 82.4, pp. 963–1008.
- Manski, Charles F (2009). Identification for prediction and decision. Harvard University Press.
- Rosenstein, Stuart and Jeffrey G Wyatt (1990). "Outside directors, board independence, and shareholder wealth". In: *Journal of Financial Economics* 26.2, pp. 175–191.
- Watts, Duncan J (2014). "Common sense and sociological explanations". In: *American Journal of Sociology* 120.2, pp. 313–351.
- Yarkoni, Tal and Jacob Westfall (2017). "Choosing prediction over explanation in psychology: Lessons from machine learning". In: *Perspectives on Psychological Science* 12.6, pp. 1100–1122.