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The Motivation: Risk and Return
Analysis of Contingent Claims

» Under incomplete markets, not all risks can be traded and hedged, and so

the market portfolio may not be optimal for all investors.

» Even in complete markets, due to heterogenous beliefs and differences in
preferences, different investors may hold different optimal portfolios, which

are significantly different from the representative investor’s market portfolio.

» Mean variance efficiency may be useful even with a subset of assets under
certain arbitrage-based models, such as Ross (1976) APT or certain
arbitrage-based pricing kernel models—even with arbitrary preferences

and general asset return distributions.
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The Motivation: Risk and Return
Analysis of Contingent Claims

» Due to market frictions, regulatory constraints on the movement of
international cash flows, etc., mean variance efficient portfolios may need

to be computed over a subset of assets.

» Due to a need for specialization of skills, many money fund managers hold
specialized portfolios, such as Treasury bond portfolios, corporate bond
portfolios, equity portfolios. These managers are often evaluated based
upon portfolio performance measures, such as the Sharpe ratio, which only

use mean and variance.
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The Motivation: Risk and Return
Analysis of Contingent Claims

» The big problem: the investor wishes to optimize over all kinds of asset
classes, such as Treasury bonds, corporate bonds, equities, commodities,
etc., each of which follow different types of asset return processes with

stochastic volatility, jJumps, etc.

» The smaller problem: the investor wishes to compute a mean-variance
efficient portfolio with a limited number of asset classes, with some

limitations on the types of processes allowed.
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The Motivation: Risk and Return
Analysis of Contingent Claims

» With continuing advances in theoretical asset pricing and continuing
efficiency gains in computing power, the big problem may be solved in the

in intermediate to long-term future.

» In this paper, we address the smaller problem: how to compute mean-
variance efficient portfolios using a given asset class or at most two or
three asset classes, with some limitations on the stochastic processes for

their returns.

» We take it as a given that an investor holds a subset of assets using which
they wish to compute a mean-variance efficient portfolio over a finite
horizon H.
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The Motivation: Risk and Return
Analysis of Contingent Claims

» Even after 70 years of the discovery of Modern Portfolio Theory by
Markowitz (1952), even the smaller problem as been solved only for

publicly-issued equities from large equity indices, such as the S & P 500.

» One may be surprised to know that parsimonious formulas for expected
returns, variances, and covariances over a finite horizon H, do not exist
for the most basic claims, such as European call options on equites,
Treasury bonds, corporate bonds, using even the most basic models, such

as Black-Merton-Scholes, Vasicek (1973), and Merton (1974), respectively.
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How to Compute Expected Price

The R Measure
g ol

[P Transition Probs Q Transition Probs
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How to Compute Expected Return

The R measure allows an analytical solution of the
expected price of a contingent claim at a finite horizon H.

For example,

E{{Ch] = This is what we do in the 2022 JF paper
Why is this a big deal? It applies to hundreds of models and
zillions of securities. Rubinstein solution of expect future price

applies only to a European call option under the Black-

Scholes model.
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How to Compute Expected Return

* How does the R measure work for the expected price?

* Look carefully: the change of measure occurs at a future time H, and

not at time zero or the current time t.

* This simple trick which we discovered almost 50 years after the Black-
Merton-Scholes formulas in our 2022 JF paper, has revolutionary

iImplications for risk and return computations of contingent claims.
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How to Compute Variance and

Covariance of Contingent Claim
Returns

The R measure also allows an analytical solution of the second

moment and co-moment of contingent claims at a finite

horizon H. For example,

£, C |

= This is what we do in the next paper
Et[ClH 'CZH]
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How to Compute Portfolio Return and Variance

The R measure allows an analytical solutions of the expected

returns and variance of a portfolio consisting of arbitrary

contingent claims at a finite horizon H.

For example, given any contingent claim F' with weights w;,

N
E w@F}{
1=1

Ky

N .
1=1

Va ¢

N N
= waVart [F};] + Z Zwiijovt {F}{, Fﬁf}

i=1 i=1 j#i
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The R Measure: A Binomial Tree Example

* The binomial tree for expected call price and stock price

under the R measure:

15.54

P Probability . Q Probability

Expected Call Price
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The R Measure: A Binomial Tree Example

* The binomial tree for expected call price squared and
expected call price under the R measure:

366.34
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Applications of the R Measure

The Black-Scholes model

* The Black-Scholes model uses an equivalent probability
measure Q, whose discovery was made heuristically by Cox
and Ross (1976) and formally by Harrison and Kreps (1979).

wg@zwf+/ ~du
0

* Define a probability measure R which is equivalent to P,
whose Brownian motion/Wiener process is given as follows:

WE =W [ Leda
0
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Applications of the R Measure

The Black-Scholes model

* Under the physical measure P, the underlying asset process S is given

as
dSs

Ss

* By the Girsanov theorem, define W# =W_ + [Jydu , where v= (u—7r) /o
IS the market price of risk (MPR), the stock price under the risk neutral
measure Q is given as

dSs
Ss

= pds + odW?,

= rds 4+ odW2.

e Substituting W, with dW? = dWE® — 1, ;,vds gives the stock price
process under the R measure as follows:

dS;

5 = (-r + ol -:;'H}) ds + Ud["l’rf

— (.Ul{,u,-f,-;n} + Tl{.ugu}) ds + Jd]’_ii,rﬁ]}R'
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Applications of the R Measure

The Black-Scholes model

* Inour JF paper, we show the expectation of any contingent claim, for
example, a call option can be computed as follows:

E,[Cy] = EF [e— 17 Tuducﬂ

* Therefore, the expected European option price holding until future time
H with strike price K is

E, [Cr] = EX [e‘*(T‘H) (St — K)+]

— Ste“’(H_t)N (d}) — Ke_T(T_H)N ((fz) 3

- In(St/K) 4+ p(H —1)+7r(T — H)+ 50°(T — t)
L oI —1 ’
- In(Si/K)+p(H —t)+r(T— H) — 26*(T — t)

do =
? o1 —t

Isenberg School
of Management

UMassAmbherst




Applications of the R Measure

Dynamic term structure model: the CIR model

* Cox, Ingersoll and Ross (CIR, 1985) assume the instantaneous
short rate process is given as follows:

drs = a, (my —rg)ds + om/'rdef

* Assume the market price of risk and the Girsanov change
between Brownian motions are given by W2 = W, + [ v,/rudu

* Then the short rate process under the R measure can be derived
as follows:

dr, = [ozr (my —1s) — 1{52H}%07~T3} ds + O'T\/EdWF
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Applications of the R Measure

Dynamic term structure model: the CIR model

* The expected future price of a T-maturity pure discount bond at
time H is given under the CIR model as follows. Forall t<H <T,

EY [P(H,T)] = E} {exp (— /HT ruduﬂ

= exp (ALY (1 1) = AQLD (11— 6) = BELD (1~ 1) i)

ﬂ TTI

where b1 = Bffg}gli(T — H), af = o +yror, mj = —27— and for

Or+YrOp
any well-behaved b,c,a and m, A% (-yand B (r) are given by
1(B+a)r
A (1) = =22 e ,
’ o2 boZ (eBT — 1)+ B —a+efT (B + a)

b(ﬁ—{—o:—{—eBT(B—a))+20(e57—1)
boZ (ST —1) + B —a+efT (B+a)

B (7) =

with 8 = v/a? 4 202c.

UMassAmbherst | [senbers School

of Management



Applications of the R Measure

Expected future prices of contingent claims under the
following models:

1.

oA

~N o

UMassAmbherst

Equity option pricing models of Black and Scholes (1973), Cox and
Ross (1976), Merton (1976), Hull and White (1987), and Rubinstein
(1991).

Corporate debt pricing models of Merton (1974), Black and Cox (1976),
and Leland and Toft (1996).

Term structure models of Dai and Singleton (2000, 2002), Ahn, Dittmar,
and Gallant (2002), Leippold and Wu (2003), and Collin-Dufresne,
Goldstein, and Jones (2008) for pricing default-free bonds.

Credit default swap pricing model of Longstaff, Mithal, and Neis (2005);
VIX futures and the variance swaps models of Dew-Becker et al.
(2017), Eraker and Wu (2017), Johnson (2017) and Cheng (2019).
Currency option model of Garman and Kohlhagen (1983).

Various Fourier transform-based contingent claim models of Heston
(1993), Duffie, Pan, and Singleton (2000), Carr et al. (2002), and
others, summarized in Section I1.C, among others.
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The R Measure

* Another way for the computation of expected prices:
E:[Cu] = E; {e_ I T“d“’C'T]

=E, [P(H,T)]-E;

e~ [ rudu
R O

— B [P(H,T)]-E," [Cy]
where

B} [P(H,T)] = By [P(H,T)] = B} |Ej; o™ Ja medu]| = B} o Ji redt

and for any random variable 7,

T
E,' [Zr] = E}

o~ [ rudu ]
R Zr
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Applications of the R! Measure

The Merton model
* Assume the asset price S is described by

1S
(S ﬁs = pu(s)ds + o(s)dWY,,
* The price of a T-maturity pure discount bond P(:,T) follows as
dP(s. T

| = pp(s,T)ds + op(s, T)(m;

* Consider a European call option C written on the asset S with a strike price of K,
and an option expiration date equal to T. Using the T-maturity pure discount
bond as the numeraire, the expected price of this option is given by

E/ [Cy) = Ef [P(H.T)| B [(Sr— K)']
_ P o [ (ST —K)T
=Bl [PH.DIEY |5

— BF [P(H,T) B [(Ve — )]

where V=S/P(:,T) is the asset price normalized by the numeraire.
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Applications of the R! Measure

The Merton model

* We require that the asset price normalized by the bond price numeraire be

distributed lognormally under the Rl measure, so that the sufficient assumptions
for this to occur are:

* i) the physical drift of the asset price process is of the form u(s) = r,; +y(s),
where the risk premium y(s) is deterministic;

* i) the short rate process r, and the bond price process P(:,T) are
consistent with the various multifactor Gaussian term structure models (see
Dai and Singleton, 2000; Heath et al., 1992).

« Under the above assumptions, the solution of the expected price of call option is

E,[Cy] = E, [Sy] N (Jl) _KE [P(H TN ((ZQ_) |

where
A 1 Ef [SH} Up A 1 Et [SH} Up
-:—1 - dy = —1 — =,
"E K T2 T U MEPHDE 2
\// (u) (w)o(u)op(u,T) + op(u,T)?)du.
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Applications of the R! Measure

The Collin-Dufresne and Goldstein model

e Collin-Dufresne and Goldstein (CDG, 2001) allow the issuing
firm to continuously adjust its capital structure to maintain a
stationary mean-reverting leverage ratio. The firm’s asset return
process and the short rate process under the CDG model are
given as follows:

dsS,
S' = (rs + ’ySJ)ds + 0o (,odV[/{PfS + 1 — p2dW£> :

dr, = a, (m, —r,)ds + o,dWT,

* The market prices of risks associated with the two Brownian
motions are given

Tis = Trs
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Applications of the R! Measure

The Collin-Dufresne and Goldstein model

e CDG assume that the face value of firm’s total debt F'* follows
the following stationary mean reverting process:

dFP
FD

=X (InSs — v —¢r, —InF”) ds.

* Defining the log-leverage ratio as = In(F?/S) , and applying It6’s
lemma, we obtain

dhs = (I_ % ; G + (;a) rs — Es) ds—o (ﬁdﬂ"’ﬂ +4/1— ,Ozdif’[-"’g]i)
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Applications of the R! Measure

The Collin-Dufresne and Goldstein model

* Using Lemma 2 and Internet Appendix Section I.D in our JF
paper, the processes of the state variables {l,r} under
the RI measure are

_ 1 S
i, = A (z _ (A + ca) ro— 1, + p‘i\‘” B, (T —s) — (p‘:""" B, (H—s)+ U)’\ ) 11{3<H}) ds

. ( pdWEL L /1= deIfif"i?) |
2

~ 2 2 . T
(1?13 — CPT (n?ﬂ;’ - UT “ - TS - & Ex]f:_S) —|_ (%BQT (H — S) —|_ O-T “ ) ]I{S<H}) (18 —|_ OFTC]‘L{;EJ- ?

Q. Q. Q. Qy

where B.(7) = (1/a)(1 —e ).

* Then the expected future price of a risky discount bond is given

by
P Ry
B (1)) = B (P 7)) (1- B 10, py])
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Applications of the R! Measure

Expected future prices of contingent claims under the
following models:

1. The stochastic interest-rate-based equity option pricing model of
Merton (1973b) and its extensions.

2. The stochastic interest-rate-based corporate debt pricing models of
Longstaff and Schwartz (1995), Jarrow, Lando, and Turnbull (1997),
and Collin-Dufresne and Goldstein (2001).

3. Various term structure models for pricing bond options and caps,
such as Dai and Singleton (2000, 2002), Collin-Dufresne, Goldstein,
and Jones (2008); Ahn, Dittmar, and Gallant (2002), Leippold and
Wu (2003); Heath, Jarrow, and Morton (1992), Miltersen,
Sandmann, and Sondermann (1997), Brace, Gatarek, and Musiela
(1997), and Jamshidian (1997).

4. The currency option pricing models of Grabbe (1983), Amin and
Jarrow (1991), and Hilliard, Madura, and Tucker (1991), among
others.
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The R-Transform

* Duffie et al. (2000) define a transform ¢ : C¥ x R, x Ry — C
of Y; conditional on 7; , when well defined for all t <T, as

exp (—[ T(Yu)du) exp (2'Y7)

* To extend the Q-transform and compute the expected prices
of contingent claims, we define the R-transform
¢ CV xRy xR, xR, — C Of Y; conditional on F;, when well
defined forallt <H <T, as

exp (/H T(Yu)du) exp (2'Yr)

(§)
6% (21, T) £ By

o™ (z;t, T, H) 2 B,
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Applications of the R-Transform

The SVJJ model

* Duffie, Pan and Singleton (2000) propose a stochastic volatility jump-
based equity option (SVJJ) model, which assumes that the log asset
price process, Y =InS, and the volatility factor follow the following
processes under the physical measure P:

dY, = (r — g+~ +47 = %) ds + /v, (deE. + V1= PQdWQIi)

N
+d (Z JS,.L-) — \jds,

=1

N
dvs = a, (M, — vs) ds + a,m/fu,,._dI/Vl]P.Dq +d (Z J,,,#-) :
i=1

* The risk-neutral process under risk-neutral measure Q is given as:

N
dy, — (r _g- %) ds + /Us" (deS /1 p2dW§£) +d (Z Js,i) —\ads,
=1

=1

NS
dvs = [ay, (Mmy — vs) — Y vs| ds + am/vs_dWS +d (Z Jw’) .

lsenberg School

UMassAmbherst

of Management



Applications of the R-Transform

The SVJJ model

* Under the R measure, the dynamics of log asset price process and the
volatility factor process are derived as follows:

dYs = ('r —q- UES + 1<y vs + 1{s<H}'YJ) ds + v/vs— (deFS V- p2dw§s)

N
+d (Z JS,i) — 1{S<H}Aﬁd8 — 1{52H})\*ﬁ*d59
1=1

1=1

N
dvs = [ (Mo — vs) = (o> 11)7"vs] ds + 0wy /05— AW +d (Z Jvaf) -

* The R-transform of the SVJJ model defined as below can be used to
obtain the expected future prices of European call and put options:

T
exp —/ rdu 4+ zYr
H

= exp ( —r(T— H) + Ang’z;) (T'— H) + Aézhz?) (H —1t) —|—B§Zl’22) (H—t) v +2- Yt)

of(2) £ K/
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How to Compute Higher Moment

* Why does the R measure work for the expected price?

B [Cr] = B [EF, [e77 T~ (57 - K)*]]

— ER :]E% [e—’”(T—H) (Sr — K)*H

= Ef o (T—H) (ST — K)+]
* Why doesn’t the R measure work for the higher moment?

E; [012_1] = ]EIE [E% [e—r(T—H) (Sr — K)+} . E% [e—fr(T—H)(ST B K)—i_H
— ]Ef? [Eﬂ}; [e—r(T—H) (Sr — K)+:| -IE% [e—r(T—H)(ST B K)+H

B T (Y o5y K
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The Parallel Process

* Introduce a parallel process which has the exact same process as
the underlying process before H, and has an independent and
Identically-distributed process after time H.

* For example, under the Black-Scholes model, the underlying asset price
process S and the corresponding parallel process S are given as follows:

* Assume S,= S., then we have under P:

dS;
Ss
dS; .
fg = pds 4+ odW. |

S

= pds + Jde :

where

AW, = 1semydW, +olgesgydW,

with W* and 7" being two independent Brownian motions.
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The Parallel Process

* Under Q: dﬁs = rds + odWZ,
dSs :
— = rds + odWY,
S
where

with 17 %and T7¢ being two independent Brownian motions.

, . ds,
Under R: S — (ﬂ1{8<H}+T1{SZH}) dS‘|‘O’dW§,

= (M1{3<H} T Tl{szﬂ}) ds + O-de];Rv

where AWE = 1y dWE + 01 (s gy dIVE

with 7 ®and 17" being two independent Brownian motions.
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The Parallel Process

* The expected second moment of holding a call option until future
time H can be obtained as follows:

E, [C5] =B [Ej |e" T~ (5p — K)"| - B [T (8p - K)T|

— B [ES [e =) (87 — K)*| ES [emT=H) (- K)F|

= B} [E} [e77 ) (57— K)o T (81— )]

_ ]EE% |:e—2T(T—H) (ST — K)(ST — K)]'{ST>K,ST>K}:|

_ / / e T (Sy — K)(Sy — K)pf (Sr. 51) dSpdSy
K K
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The Parallel Process

* The expected second moment of holding two call options based
on two stocks until future time H can be obtained as follows:

E, |Cps Cif?%z} =E, _]E% _e_T(T_H) (S, — K1)+] Ej {e_ﬂ"(T_H)(SzTQ - K2)+H

=B [E |e T (Sir, — K0)F| B [T (Sr, — Ka)|

— B [ES [e T (Syp, — Ky) e T (S, — K2)+H

— E_IE {6—27*(T—H) (SlTl — K) (SQT2 — K)]'{S] Ty S K -S2’1‘2 >[(2}

= f / e 2 (S, — K)(Sar, — K)py (SlTUSQTQ) dSir, dSar,
K, JK>5
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The Parallel Process

* The expected third moment of holding a call option until future

Q
_]EH

Ej

Ej

UMassAmbherst

time H can be obtained as follows:

7T (5 — K)T| - EF 7T (Sp — K)*| - B [T (Sp - K)*||

.

o T (Sp — K)*| B o7 T (Sp — K)*| B [T (S — K|

. .o

[~ (T—H) (Sp — K)T e T~ (§p — K)* . e (T—H) (g — K)J’”

= B} o3 T8 (8p — K)(Sr — K)(Sr — K) g, pc 0o 8rorc)]

= / / / 6—37‘(T—H)(ST — K)(ST — K)(ST — Kv)pliQ (ST, ST, ST> dSTdSTdST

Isenberg School
of Management




The Parallel Process

* The expected third moment of holding three call options based on
three stocks until future time H can be obtained as follows:

S1,K So,Ko S3,K:
Eq {Cﬁi'r. Oy Oy 5}
=E} [Ef [e 7T (Sip, - Kl)q ‘Eyq [e_T(T_H)(Sm - KQ)W Ei; [e_T(T_H)(S:*TB B K3)+H

_ Ef) E‘}_‘I e—’r-(T—H) (SlTl o K1)+:| . ]EIEI |:e—7‘(T—H)(Sv2T2 . K2)+:| . EI_‘I |:e—r(T—H)(S«3T3 L K:3)+:|:|

_ E}f -]E“l.l‘ -e—’r(T—H) Sir, — K1 T e e—'r(T—H) S‘l’[’-) - K + .e_"‘(T—H) S:BT;; — K5 i
L H . -

= E; [e_:37‘(T_H)(51T1 — K1)(Sam, — K2)(S31, — K3)

+1{s~ K1,857, >Ko2,837, >K
D17y > 81,5279 > 182,537 > \:s}

=/ / / e "= (811, — K1)(Sory, — K2)(Ssr, — Ks)py (51T1,5'2'I‘-_>,5':m) dS11, dS27,dSar,
K, JKo JK3
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Applications of the Parallel Process

The Black-Scholes model: the variance

* By deriving the joint distribution of Sr and Sr under the R measure, the
second moment of option price holding until future time H with the strike
price K under the Black-Scholes model is:

E, [C}] = S2e(r+o (=0 (d},di) _ 2K S,etH-D=r(T—H) \r (dl d4) 4 K227 (T—H) 5s (dz dz)

WhereN(:c,y):F(X<:c Y <), withG) ~N[(5),( ,9)]andp=(H —1)/(T —t)
= In(St/K) +p(H =) +7(T — H) + 30°(T — t)
ovT —t ’
g In(S¢/K)+p(H —t)+r(T — H) — 1o*(T —t)
2 = \/715 )
i In(S:/K)+ (p+0*)(H—t)+r(T—H)+ 30*(T — t)
o oVT —1
i — In(S:/K)+ (u+o*)(H —t)+r(T — H) — +6*(T — t)
ovVT —t |

* The variance: Var[Cu] = E; [Cx] — E; [CH]
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Applications of the Parallel Process

The Black-Scholes model: the covariance

* By deriving the joint distribution of Si7; and S.z, under the R measure,
the covariance of two options holding until future time H under the
Black-Scholes model is:

[Cngfl\l Obz Rv:| _ SltSQte(#l'F#z-FpO'lO'z)(H—t)N (&313 dh'gg) . Klsztepg(H—t)—r(Tl—H)N (dﬁl'l:de)
~ K8y, H=O= N (dyy dyy ) + Ky Ko™ THT 2N (dyy, s ),

where N (z1,20) = P(X; < 21, X0 < X9), with (§§) ~ N [(8) ; (pig p:112)] and

P12 = —t)/\/(Th —t)(Ty — t) . with
g — ln(Su/Kl)—i—,ul( —t)+r(Ty — H) + 303(Th —t). 0y — In(Sy /K1) + (g1 + poroa) (H —t) +r(Ty — H) + 501(Th —t).
oIy —t S oI —t |
4, — S/ Ko) + pa(H —t) + (T — H) + +305(T: — 1) dy, — 252/ Ko) + (2 + ponc) (H — 1) + (T — H) + 2051 — 1)
oIy — 1 - o2/ —t '
_ In(Sy /K1) + pi(H —t) +r(Th — H) — %U%(Tl —1) do = In(Sy/Ki) + (p + poroz) (H —t) +r(Ty — H) — égf(Tl —t)
2 oI — 1t ' e oI —t '
- (S /Ka) + po(H — t) +r(Ty — H) — 205(T> — ) Qo — In(Sai/K2) + (2 + poros) (H — t) + r(Ty — H) — 03(Ts — t)
22 = T i y ST oo/ Ty —t .

* The covariance: Cov, |7, Cira? | = By [C0 Ol — By |[Copdf | By | Ot
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Applications of the Parallel Processes

The Black-Scholes model: the skewness

* By deriving the joint distribution of S, S; and S under the R measure, the

third moment of option price holding until future time H with the strike
price K under the Black-Scholes model is:

B [Ch] = S 7 ON (diydi. ds ) = 3K 2 T0 T TN (ds, s do)

+ 3K St =02 (=1 s (cfl,oi4,ci4) — KT N (cig,cig,cig),

Whel‘e_/\/'(x,y,z) = FX<x,Y<yZ<z), W|th(§) NNK%) ’( %%)], p=(H—1t)/(T—1)

i In(S;/K) + (n+20%)(H —t)+ (T — H)+ s0*(T — t)

oI —1t ’
i In(S:/K) + (u+20°)(H —t) +r(T — H) — 30°(T — t)
- oVT —t |

E, [Ch] — 3B [CH]E: [Ch] +2E¢ [Cr]

* The skewness: Skew:[Cx] = 3/2
(E¢ [C%] — EZ [CH))
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Applications of the Parallel Process

Dynamic term structure model: the CIR model

* Under the CIR model, the expected second moment of a T-maturity pure
discount bond at time H is given as follows: Forallt<H<T,

E. [P(H,T)"] = EX lexp ( /HT ?"udu) - exp ( /HT ff‘udu)

— exp (—QA(b*’C*)(T —H)— A" (H—t)— B9 (H—1t)- rt) ,

QL my. Qpy My QM

where b* =0, ¢* =1, b= 2B " )(T — H), ¢ =0, and for any well-
behaved b,c,a and m, a®2) () and B () are given by
(b,c) _ 2am ZBe%(ﬁJra)T
Aa,m (T)— —o_% ln(bo’%(eﬁ"_—l)+6—a—|—eﬁ7—(6+a) )

B(b’c)( )_b(B—J—a—i—eBT(B—a))+20(e67—1)
am \T) = bcr%(eﬁT—l)—l—B—a—l—eﬁT(B—i—a) ’

with 8 = /a2 + 202c.
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Applications of the Parallel Process
The SVJJ model

* Under the R measure, the dynamics of the parallel log asset price

process and the parallel volatility factor process are derived as follows:

. Vs .
dy, = (r — 4= 5 + Lamyy 0s + 1{s<H}“/J) ds

+ eV 0s— (PdW{Rs +v1- pZde‘S) + 1>y Us— (,odﬂﬁ + mdwfi)

Ng
+d (Z JS',z‘) — 1{S<H})\ﬁd8 - l{szg})\*ﬁ*ds,
1=1

N
dvs = [O&U(mv — ?)S) — I{SEH}’}/UT’)S] ds + 1{3<H}UUV ’l.)sfdwl}i + 1{32}1}0'@\/ ’l‘)sfdﬂ/ﬁ. +d (Z J@ﬂ;) .
i=1

* The extended R-transform of the SVJJ model defined as below can be
used to obtain the expected second moment of European options:
T
qbg(z, 3) & E, [exp (—/ 2rdu + zYr + Z'YT)]

H

exp ( —on(T — H) + A1) (7 _ gy 4 ABE) (0 oy

+Agz1,z2) (H_t)_}_Bészz) (H—t)-vt—i—(z—i—é)-}/}).

Isenberg School
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The R! Measure

* Away for the computatlon of expected second moment

E; [Ch] =E/ |

where

UMassAmbherst | [senbers School

T
e~ IH 'ruduCT

e~ fH ruduc

_ ud
€ IH " UOT
T
_ ud
e fH " UCT .

T
_ wd
e IHT uCT
R [ —
'EH

eS|

T . .
e” fH ’f‘-u,duCT]
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Applications of the Parallel Process

The Collin-Dufresne and Goldstein model

* For the CDG model, the parallel processes of the state variables
{l,7} under the R} measure are given as

di, )\[ ( +¢) i +pi0’"Ba,_(T—s)
oo, oy®
_ (P L (2B, (H = 5) = Ba, (T = 5)) + %) 1{5<H}} ds
— oL aemy (pAWLE + V1= P2AW5E ) = oLy (pdW)T + V1= P27 ),
2 2
dT"s = Qp [mr - or - Ts - &Bar (T - S) + (& (QBar (H o S) - Bar(T - S)) + 07‘77“) 1{3<H}:|
o, o o, o,

+ Url{s<H}dWi; + Url{szH}dI’Vi;-
where B.(r) = (1/a)(1 — e=7).

* Then the expected second moment of a risky discount bond is
E (D, T?) =B [PHT?ES [(1-wlp, o) (1-wlf )]

P 2 RT 2 Rg
= Et [P(H,T) ] (1 — 2w]E [ {T[t,T]<T}i| + w Et [1{T[t,T]<T:’f[t:T]<T}}) .
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Expected Option Return Simulation

Figure IA2: Surface of Annualized Log Expected Returns on ATM Calls
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Expected Option Return Simulation

Figure IA3: Surface of Annualized Log Expected Returns on ATM Puts
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Conclusion

* An important gap remains in the understanding of the expected returns and
risks of contingent claims.

* We propose a theoretical framework to fill this gap:

Propose the equivalent expectation measures (EEMs) as
generalizations of EMMSs.

Propose R-transforms as generalizations of Q-transforms.

Solve the analytical solutions of expected prices, and higher moments
under various types of contingent claim models using parallel
processes.

Show how mean-variance efficient portfolios can be computed using a
limited number of asset classes, which include both the options and
the securities underlying these options.

Show how mean-variance efficient portfolios can be computed for
subset of assets like Treasury Bonds and Corporate Bonds.

Future applications for parametric models using GMM and MCMC
methods.
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Thank you!
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