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The Motivation: Risk and Return 
Analysis of Contingent Claims

➢ Under incomplete markets, not all risks can be traded and hedged, and so 

the market portfolio may not be optimal for all investors. 

➢ Even in complete markets, due to heterogenous beliefs and differences in 

preferences, different investors may hold different optimal portfolios, which 

are significantly different from the representative investor’s market portfolio. 

➢ Mean variance efficiency may be useful even with a subset of assets under 

certain arbitrage-based models, such as Ross (1976) APT or certain 

arbitrage-based pricing kernel models—even with arbitrary preferences 

and general asset return distributions. 



The Motivation: Risk and Return 
Analysis of Contingent Claims

➢ Due to market frictions, regulatory constraints on the movement of 

international cash flows, etc., mean variance efficient portfolios may need 

to be computed over a subset of assets. 

➢ Due to a need for specialization of skills, many money fund managers hold 

specialized portfolios, such as Treasury bond portfolios, corporate bond 

portfolios, equity portfolios.  These managers are often evaluated based 

upon portfolio performance measures, such as the Sharpe ratio, which only 

use mean and variance. 



The Motivation: Risk and Return 
Analysis of Contingent Claims

➢ The big problem: the investor wishes to optimize over all kinds of asset 

classes, such as Treasury bonds, corporate bonds, equities, commodities, 

etc., each of which follow different types of asset return processes with 

stochastic volatility, jumps, etc. 

➢  The smaller problem: the investor wishes to compute a mean-variance 

efficient portfolio with a limited number of asset classes, with some 

limitations on the types of processes allowed.  



The Motivation: Risk and Return 
Analysis of Contingent Claims

➢ With continuing advances in theoretical asset pricing and continuing 

efficiency gains in computing power, the big problem may be solved in the 

in intermediate to long-term future. 

➢ In this paper, we address the smaller problem: how to compute mean-

variance efficient portfolios using a given asset class or at most two or 

three asset classes, with some limitations on the stochastic processes for 

their returns.  

➢ We take it as a given that an investor holds a subset of assets using which 

they wish to compute a mean-variance efficient portfolio over a finite 

horizon H. 



The Motivation: Risk and Return 
Analysis of Contingent Claims

➢ Even after 70 years of the discovery of Modern Portfolio Theory by 

Markowitz (1952), even the smaller problem as been solved only for 

publicly-issued equities from large equity indices, such as the S & P 500. 

➢ One may be surprised to know that parsimonious formulas for expected 

returns,  variances, and covariances over a finite horizon H, do not exist 

for the most basic claims, such as European call options on equites, 

Treasury bonds, corporate bonds, using even the most basic models, such 

as Black-Merton-Scholes, Vasicek (1973), and Merton (1974), respectively.



How to Compute Expected Price

The ℝ Measure

ℚ Transition Probs
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How to Compute Expected Return

The ℝ measure allows an analytical solution of the 

expected  price of a contingent claim at a finite horizon H. 

For example, 

                     = This is what we do in the 2022 JF paper

Why is this a big deal?  It applies to hundreds of models and 

zillions of securities.  Rubinstein solution of expect future price 

applies only to a European call option under the Black-

Scholes model. 

 

E t HC  



• How does the ℝ measure work for the expected price?

• Look carefully: the change of measure occurs at a future time H, and 

not at time zero or the current time t.  

• This simple trick which we discovered almost 50 years after the Black-

Merton-Scholes formulas in our 2022 JF paper, has revolutionary 

implications for risk and return computations of contingent claims.  

        
       

How to Compute Expected Return



How to Compute Variance and 
Covariance of Contingent Claim 
Returns

The ℝ measure also allows an analytical solution of the second 

moment and co-moment of contingent claims at a finite 

horizon H.  For example, 

             

                   = This is what we do in the next paper
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How to Compute Portfolio Return and Variance

The ℝ measure allows an analytical solutions of the expected 

returns and variance of a portfolio consisting of arbitrary 

contingent claims at a finite horizon H. 

For example, given any contingent claim 𝐹𝑖 with weights 𝜔𝑖,

             

                                



• The binomial tree for expected call price and stock price 

under the ℝ measure:

The ℝ Measure: A Binomial Tree Example 
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• The binomial tree for expected call price squared and 

expected call price under the ℝ measure:
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The ℝ Measure: A Binomial Tree Example 
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The Black-Scholes model

• The Black-Scholes model uses an equivalent probability 

measure ℚ, whose discovery was made heuristically by Cox 

and Ross (1976) and formally by Harrison and Kreps (1979).

• Define a probability measure ℝ which is equivalent to ℙ, 

whose Brownian motion/Wiener process is given as follows:

       

  

Applications of the ℝ Measure



The Black-Scholes model

• Under the physical measure ℙ, the underlying asset process    is given

as       

• By the Girsanov theorem, define , where

is the market price of risk (MPR), the stock price under the risk neutral

measure ℚ is given as

        

• Substituting with                                         gives the stock price

process under the ℝ measure as follows:

        
       

Applications of the ℝ Measure
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The Black-Scholes model

• In our JF paper, we show the expectation of any contingent claim, for 

example, a call option can be computed as follows:   

        

    

• Therefore, the expected European option price holding until future time

H with strike price K is

        

 

Applications of the ℝ Measure



Dynamic term structure model: the CIR model

• Cox, Ingersoll and Ross (CIR, 1985) assume the instantaneous 

short rate process is given as follows:

     

• Assume the market price of risk and the Girsanov change 

between Brownian motions are given by ,

• Then the short rate process under the ℝ measure can be derived

as follows:

        

   

Applications of the ℝ Measure



Dynamic term structure model: the CIR model

• The expected future price of a T-maturity pure discount bond at

time H is given under the CIR model as follows. For all t ≤ H ≤ T,

        

where and for

any well-behaved and ,     and     are given by

with

    

Applications of the ℝ Measure

, ,b c  m



   

Applications of the ℝ Measure

Expected future prices of contingent claims under the 

following models: 

1. Equity option pricing models of Black and Scholes (1973), Cox and 

Ross (1976), Merton (1976), Hull and White (1987), and Rubinstein 

(1991).

2. Corporate debt pricing models of Merton (1974), Black and Cox (1976), 

and Leland and Toft (1996).

3. Term structure models of Dai and Singleton (2000, 2002), Ahn, Dittmar, 

and Gallant (2002), Leippold and Wu (2003), and Collin-Dufresne, 

Goldstein, and Jones (2008) for pricing default-free bonds.

4. Credit default swap pricing model of Longstaff, Mithal, and Neis (2005);

5.  VIX futures and the variance swaps models of Dew-Becker et al. 

(2017), Eraker and Wu (2017), Johnson (2017) and Cheng (2019).

6. Currency option model of Garman and Kohlhagen (1983). 

7. Various Fourier transform-based contingent claim models of Heston 

(1993), Duffie, Pan, and Singleton (2000), Carr et al. (2002), and 

others, summarized in Section II.C, among others. 



• Another way for the computation of expected prices:

   where

    

   and for any random variable     ,

        

 

The ℝ1
𝑇Measure



The Merton model

• Assume the asset price S is described by

         

• The price of a T-maturity pure discount bond P(·,T) follows as

        

                        

• Consider a European call option C written on the asset S with a strike price of K, 

and an option expiration date equal to T. Using the T-maturity pure discount 

bond as the numeraire, the expected price of this option is given by

                                   

                                                                                                                             

   where V=S/P(·,T)  is the asset price normalized by the numeraire.  

Applications of the ℝ1
𝑇 Measure



Applications of the ℝ1
𝑇 Measure

The Merton model

• We require that the asset price normalized by the bond price numeraire be 
distributed lognormally under the ℝ1

𝑇 measure, so that the sufficient assumptions 
for this to occur are:

• i) the physical drift of the asset price process is of the form 𝜇(s) = 𝑟𝑠 +𝛾(s), 
where the risk premium 𝛾(s) is deterministic;

• ii) the short rate process 𝑟𝑠, and the bond price process P(·,T) are 
consistent with the various multifactor Gaussian term structure models (see 
Dai and Singleton, 2000; Heath et al., 1992).

• Under the above assumptions, the solution of the expected price of call option is

                                                                                                                         

      where

                                                                        



Applications of the ℝ1
𝑇 Measure

The Collin-Dufresne and Goldstein model

• Collin-Dufresne and Goldstein (CDG, 2001) allow the issuing

firm to continuously adjust its capital structure to maintain a

stationary mean-reverting leverage ratio. The firm’s asset return

process and the short rate process under the CDG model are

given as follows:

        

• The market prices of risks associated with the two Brownian

motions are given

        

        



Applications of the ℝ1
𝑇 Measure

The Collin-Dufresne and Goldstein model

• CDG assume that the face value of firm’s total debt follows

the following stationary mean reverting process:

         

       

• Defining the log-leverage ratio as , and applying Itȏ’s

lemma, we obtain

   where

   

     



Applications of the ℝ1
𝑇 Measure

The Collin-Dufresne and Goldstein model

• Using Lemma 2 and Internet Appendix Section I.D in our JF 

paper, the processes of the state variables {l,r} under

the ℝ1 
𝑇 measure are

    

where

• Then the expected future price of a risky discount bond is given 

by 



   

Applications of the ℝ1
𝑇 Measure

Expected future prices of contingent claims under the 

following models: 

1. The stochastic interest-rate-based equity option pricing model of 

Merton (1973b) and its extensions.

2. The stochastic interest-rate-based corporate debt pricing models of 

Longstaff and Schwartz (1995), Jarrow, Lando, and Turnbull (1997), 

and Collin-Dufresne and Goldstein (2001).

3. Various term structure models for pricing bond options and caps, 

such as Dai and Singleton (2000, 2002), Collin-Dufresne, Goldstein, 

and Jones (2008); Ahn, Dittmar, and Gallant (2002), Leippold and 

Wu (2003); Heath, Jarrow, and Morton (1992), Miltersen, 

Sandmann, and Sondermann (1997), Brace, Gaţarek, and Musiela 

(1997), and Jamshidian (1997).

4. The currency option pricing models of Grabbe (1983), Amin and 

Jarrow (1991), and Hilliard, Madura, and Tucker (1991), among 

others. 



• Duffie et al. (2000) define a transform

of YT conditional on , when well defined for all t ≤ T, as

         

        

• To extend the Q-transform and compute the expected prices

of contingent claims, we define the R-transform

o                                    of YT conditional on , when well

defined for all t ≤ H ≤ T, as

                                                                                                    

       

The R-Transform



The SVJJ model

• Duffie, Pan and Singleton (2000) propose a stochastic volatility jump-

based equity option (SVJJ) model, which assumes that the log asset 

price process,              ,  and the volatility factor follow the following 

processes under the physical measure ℙ: 

• The risk-neutral process under risk-neutral measure ℚ  is given as: 

   

        
       

Applications of the R-Transform

lnY S=



The SVJJ model

• Under the ℝ measure, the dynamics of log asset price process and the 

volatility factor process are derived as follows: 

• The R-transform of the SVJJ model defined as below can be used to 

obtain the expected future prices of European call and put options:

        
       

Applications of the R-Transform



• Why does the ℝ measure work for the expected price?

• Why doesn’t the ℝ measure work for the higher moment?

How to Compute Higher Moment



• Introduce a parallel process which has the exact same process as 

the underlying process before H, and has an independent and 

identically-distributed process after time H.

• For example, under the Black-Scholes model, the underlying asset price 

process S and the corresponding parallel process    are given as follows:

• Assume S0 =   0,, then we have under ℙ:

      where

      with       and       being two independent Brownian motions.  

The Parallel Process

S

S



• Under ℚ:

where

          with       and        being two independent Brownian motions.

 

• Under ℝ:

where

with       and       being two independent Brownian motions.

The Parallel Process



• The expected second moment of holding a call option until future 

time H can be obtained as follows:

        
       

The Parallel Process



• The expected second moment of holding two call options based 

on two stocks until future time H can be obtained as follows:

        
       

The Parallel Process



• The expected third moment of holding a call option until future 

time H can be obtained as follows:

        
       

The Parallel Process



• The expected third moment of holding three call options based on 

three stocks until future time H can be obtained as follows:

        
       

The Parallel Process



The Black-Scholes model: the variance

• By deriving the joint distribution of     and    under the ℝ measure, the 

second moment of option price holding until future time H with the strike 

price K under the Black-Scholes model is:

where                                       , with and

                      

• The variance:

Applications of the Parallel Process

TS TS



The Black-Scholes model: the covariance

• By deriving the joint distribution of       and       under the ℝ measure, 

the covariance of two options holding until future time H under the 

Black-Scholes model is:

where                                          , with and

                                          , with

                      

• The covariance:

Applications of the Parallel Process



The Black-Scholes model: the skewness

• By deriving the joint distribution of    ，  and     under the ℝ measure, the 

third moment of option price holding until future time H with the strike 

price K under the Black-Scholes model is:

where                                              , with    ,

• The skewness:

Applications of the Parallel Processes

TS
TS



Dynamic term structure model: the CIR model

• Under the CIR model, the expected second moment of a T-maturity pure 

discount bond at time H is given as follows: For all t ≤ H ≤ T, 

where                                                           , and for any well-

behaved and ,     and     are given by

with

Applications of the Parallel Process

, ,b c  m



The SVJJ model

• Under the ℝ measure, the dynamics of the parallel log asset price 

process and the parallel volatility factor process are derived as follows: 

• The extended R-transform of the SVJJ model defined as below can be 

used to obtain the expected second moment of European options:

        
       

Applications of the Parallel Process



• A way for the computation of expected second moment:

   

where 

and or any random variable 𝑍𝑇,

        

 

The ℝ2
𝑇  Measure



Applications of the Parallel Process

The Collin-Dufresne and Goldstein model

• For the CDG model, the parallel processes of the state variables

{ ሶ𝑙, ሶ𝑟} under the ℝ2 
𝑇 measure are given as

    

where

• Then the expected second moment of a risky discount bond is 



Expected Option Return Simulation



Expected Option Return Simulation



• An important gap remains in the understanding of the expected returns and 
risks of contingent claims.

•  We propose a theoretical framework to fill this gap:

• Propose the equivalent expectation measures (EEMs) as 
generalizations of EMMs.

• Propose R-transforms as generalizations of Q-transforms.

• Solve the analytical solutions of expected prices, and higher moments 
under various types of contingent claim models using parallel 
processes. 

• Show how mean-variance efficient portfolios can be computed using a 
limited number of asset classes, which include both the options and 
the securities underlying these options. 

• Show how mean-variance efficient portfolios can be computed for 
subset of assets like Treasury Bonds and Corporate Bonds.

• Future applications for parametric models using GMM and MCMC 
methods. 

        

Conclusion



Thank you!
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