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ABSTRACT

We use machine learning to assess the predictive ability of over a hundred corporate gover-
nance features for firm outcomes, including financial-statement restatements, class-action
lawsuits, business failures, operating performance, firm value, stock returns, and credit
ratings. We discover that adding corporate governance features does not improve the
predictive accuracy of models over that of models constructed using only firm characteris-
tics. Our results confirm the challenges in constructing measures of corporate governance
with predictive value suggested in prior research. These results also raise doubts about
the existence of strong causal effects of corporate governance on firm outcomes studied in
prior research.

*We thank Tengyuan Liang, John Core, Michael Weisbach (discussant), and seminar participants at the
Northwestern Law School Law and Economics Colloquium, MIT, NBER Big Data and Securities Markets
Conference for helpful comments. We are grateful to the authors of Duchin et al. (2010) and Atanasov and
Black (2021) for generously sharing their data and code with us. We also thank Vadim Cherepanov and
Jingyu Zhang for outstanding research support. Larcker acknowledges support from the Stanford Rock
Center for Corporate Governance. Zakolyukina acknowledges financial support from the IBM Corporation
Faculty Research Fund, William Ladany Faculty Research Fund, and the University of Chicago Booth School
of Business, and research support from the University of Chicago Research Computing Center. Gow is at
the University of Melbourne. Larcker is at Stanford Graduate School of Business and Hoover Institution.
Zakolyukina is at the University of Chicago Booth School of Business. Send correspondence to Anastasia A.
Zakolyukina, University of Chicago Booth School of Business, 5807 S. Woodlawn Ave., Chicago, IL, 60637.
Email: anastasia.zakolyukina@chicagobooth.edu.



1. Introduction

Three broad interrelated questions have long been prominent in corporate governance
research: measurement, prediction, and causation. Researchers and practitioners have
been interested in the measurement of corporate governance for at least two reasons. First,
researchers and practitioners have been interested in constructing measures of corporate
governance that can be used to predict unfavorable corporate outcomes, such as financial-
statement restatements, class-action lawsuits, business failures, or declines in operating
performance, firm value, and credit rating. Second, researchers are generally interested in
causal questions, such as whether worse corporate governance increases the probability of
or causes unfavorable corporate outcomes.

The questions of measurement and prediction have often been pursued in concert. For
example, Daines et al. (2010) examine whether commercial measures of corporate gover-
nance predict various firm outcomes and find very little evidence of these measures having
predictive value. Larcker et al. (2007) report similar results using researcher-constructed
measures of governance. As for causation, one important stream of the literature has looked
for associations between corporate governance features and firm outcomes as evidence of
causal effects. Papers in this literature typically condition these associations by including
a variety of firm characteristics as control variables. For example, Gompers et al. (2003)
find that “firms with stronger shareholder rights [a dimension of corporate governance]
had higher firm value, higher profits, higher sales growth, lower capital expenditures,
and made fewer corporate acquisitions.” While they warn that, without random assign-

ment of governance, their evidence does “not allow strong conclusions about causality,”



Gompers et al. (2003, pp. 209-210) do claim to find some evidence that “higher agency
costs [caused by weaker shareholder rights] ... [affecting] both capital expenditures and
acquisition activity.”

In this paper, we use machine learning to re-examine the broad research questions of

measurement, prediction, and causation in corporate governance.!

Mirroring the basic
approach in the stream of literature that has examined associations between corporate gov-
ernance attributes and firm outcomes, we examine whether corporate governance features
have predictive value for subsequent firm outcomes incremental to firm characteristics. We
collect comprehensive data on over a hundred corporate governance characteristics, in-
cluding institutional investor holdings, anti-takeover provisions, executive compensation,
and board characteristics such as financial expertise (e.g., Bhojraj and Sengupta, 2003; Lar-
cker et al., 2007; Daines et al., 2010). We also collect data on firm characteristics drawn from
prior literature. For firm outcomes, we draw on extant corporate governance research in
considering financial-statement restatements (Dechow et al., 2011), class-action lawsuits
(Rogers and Stocken, 2005), business failures (Campbell et al., 2008), operating performance
(Daines et al., 2010), firm value (Daines et al., 2010), stock returns (Fama and French, 2015),
and credit ratings (Daines et al., 2010). We train models that use current characteristics to
predict future outcomes. We apply gradient boosting of regression trees (Friedman, 2001;
Friedman et al., 2009), which easily accommodates both non-linearities and interactions

between variables, and use cross-validation in the training data to set meta-parameters. We

compare the predictive ability of models including corporate governance characteristics

Internet Appendix A discusses research on CEO duality, board independence, and staggered boards as
three examples studied in prior research.



against both a baseline model that uses the average outcome as the prediction, and also
machine-learning models based solely on firm characteristics.

In our main analysis, we find that—for virtually all outcomes—including corporate gov-
ernance characteristics does not improve the predictive ability of models over those that use
firm characteristics alone. While machine-learning models based on firm characteristics
alone outperform the baseline models, adding corporate governance characteristics gen-
erally does not yield statistically significant improvements in model performance. These
results suggest that these corporate governance attributes have little or no causal effect on
the firm outcomes, which undermines causal claims in association-based studies.

While many papers have given causal interpretations to documented associations, this
approach has not gone without criticism. As acknowledged by Gompers et al. (2003),
governance features result from complex choices by firms and are not randomly assigned.
As such it is well-understood that associations per se do not provide reliable evidence
of causal relations. For example, if trying to understand the effect of police on crime,
a researcher who naively examined the association between police numbers and crime
statistics across neighborhoods might be surprised to find a positive association instead of
a predicted negative one.? Such an association could arise because factors that affect crime
levels in a neighborhood also drive the number of police officers deployed there.

Many researchers have sought to use various so-called identification strategies to iden-
tify variation in corporate governance features that are plausibly random (or “as if” ran-
dom) to draw more credible causal inferences. In terms of our crime example, if we

could randomly manipulate the number of police in the neighborhoods under study and

2We thank Michael Weisbach, our discussant at the 2023 NBER Big Data and Securities Markets conference,
for suggesting this example.



conjecture that additional police reduce crime, we would expect that the neighborhoods
randomly assigned additional police should have lower subsequent crime rates than com-
parable neighbourhoods assigned to be controls. In this way, our conjectured causal
relation could be expressed as a prediction of variation in future crime rates across treat-
ment assignments. And failure of randomly assigned additional policing to predict such
rates could be interpreted as either evidence against the existence of such a causal relation
or that the causal effect is too small to be detected.

To illustrate how our basic approach can be applied in such settings, we re-examine the
setting of Duchin et al. (2010). Duchin et al. (2010) use compliance with the requirements
of Sarbanes-Oxley Act of 2002 (SOX) prior to SOX as an instrument for subsequent changes
in the number of independent directors. They then examine the causal effects of such
directors on firm performance, including tests of differential effects for firms with vary-
ing information cost. We apply our machine-learning approach to the setting of Duchin
et al. (2010) to examine whether random assignment to different treatments predict firm
outcomes incremental to the firm attributes included as controls by Duchin et al. (2010).
Because valid identification strategies are typically specific to a given setting carefully con-
structed by the given research team, our analysis of the setting of Duchin et al. (2010) merely
exemplifies how machine learning can be applied in settings where causal interpretations
of empirical analyses are more credible. In our reanalysis of Duchin et al. (2010), we do not
find evidence that exogenous shocks to board independence predict firm performance.

Our use of machine learning not only for prediction, but also to glean insights into causal
relations draws on recent work connecting prediction and causation. Many social scientists

and philosophers find it self-evident that causal explanation must also be predictive; that



is, the knowledge identified by the causal mechanism can be used to predict an outcome
on new data (e.g., Hempel and Oppenheim, 1948; Freedman, 1991; Manski, 2009). In terms
of the police-and-crime example above, we would expect that, to the extent that exogenous
increases in police numbers cause reduction of crime rates in those neighborhoods, that
these increases should predict reduced crime.

Using machine-learning methods has a number of benefits relative to the methods
more conventionally used in corporate governance research, which typically deduce causal
effects from the presence of statistically significant coefficients in regression analyses. First,
machine-learning methods are designed to reduce the potential for over-fitting. Recent
years have seen an increase in concern that empirical results in social science are not
reliable, often due to various factors that lead to published research documenting relations
that are hard to reproduce in subsequent research (Ioannidis, 2005; Harvey, 2017).

Second, machine-learning methods are particularly useful in complex institutional set-
tings where theory provides limited guidance on true causal relations. For example, while
conventional wisdom suggests that independent directors increase firm value, researchers
have struggled to find evidence of such effects (e.g., Hermalin and Weisbach, 1991). Duchin
et al. (2010) argue that the relation between independent directors and firm value is more
complex than assumed in prior research and show that independent directors increase
firm value when information costs are low. Given the time that elapsed between early
studies (e.g., Rosenstein and Wyatt, 1990; Hermalin and Weisbach, 1991) and Duchin et al.
(2010), the insight of Duchin et al. (2010) was arguably non-obvious. In such settings,
machine-learning can identify complex interactions between variables such as those doc-

umented in Duchin et al. (2010). The tree-based ensemble methods we use in this paper



are particularly well-adapted to detecting interactions that improve the predictive ability
of models.

Our results are, of course, subject to a number of caveats. First, our focus on easily mea-
sured and commonly used corporate governance characteristics may limit the predictive
ability of models derived from them. It may be that dimensions of corporate governance
less easily measured and observed by researchers have significant explanatory power for
firm outcomes.

Second, our use of models based on firm characteristics as benchmark models may
be problematic. If the causal effects of corporate governance attributes on firm outcomes
are mediated by firm characteristics in our benchmark models, the incremental predictive
value of governance attributes may be understated.® It is important to note that this caveat
also applies to papers that include these firm characteristics as controls and we select these
variables precisely because prior research has used these characteristics in this way. But to
better understand this issue, we examine the performance of models based on corporate
governance attributes alone. We find that these models do not perform better than the
baseline models and, with the exception of compensation and board characteristics, have
larger prediction errors. Compensation and board characteristics often outperform base-
line models, but have accuracy that is similar or inferior to the models that use only firm
characteristics. Firm characteristics is also the most important group of predictors.

Third, it is possible that causal relations between corporate governance and firm out-
comes are too complex to be recovered by any association-based evidence from observa-

tional data. For example, the endogenous selection of corporate governance attributes

3Gow et al. (2016) provides a general discussion of when inclusion of controls reduces or increases bias.



is likely to confound analyses based on associations (Hermalin and Weisbach, 2003). Of
course, as discussed above, this caveat applies to a significant portion of research on cor-
porate governance. Additionally, our reanalysis of Duchin et al. (2010) demonstrates how
our basic approach can also be applied in settings where credible identification strategies
exist and our results in that setting are consistent with those in our main analysis.

Our paper contributes to our understanding of corporate governance in a number of
ways. First, we contribute to the literature examining the predictive ability of corporate
governance measures. Prior research (e.g., Gompers et al., 2003) has often used simple
indexes, perhaps to avoid concerns about data-dredging or overfitting. Machine-learning
approaches are explicitly designed to facilitate prediction and modern methods such as
those we use are widely regarded as the state of the art for this purpose. The fitted values
from the models we train using machine-learning methods can be viewed as measures of
corporate governance. No paper that we know of has examined the predictive ability of
machine learning—derived governance measures. Our results provide additional evidence
on the difficulty of constructing meaningful and useful measures of corporate governance.
Like Larcker et al. (2007) and Daines et al. (2010), we find that the predictive ability of
corporate governance measures is somewhere between zero and very weak. Our results
suggest that these findings generalize beyond the specific classes of governance measures
that those papers study.

Second, our paper provides evidence regarding the existence and strength of causal
effects of corporate governance on firm outcomes. In this regard, our paper draws on
recent research in the social sciences that seeks to integrate explanatory and predictive

modelling (Hofman et al., 2021) and to use prediction to test theories (Peysakhovich and



Naecker, 2017; Fudenberg et al., 2022; Agrawal et al., 2020). The failure of corporate
governance measures to predict the kinds of outcomes studied in prior research suggests
that either corporate governance theories offer little in terms of explanatory power for
firm outcomes and that further work is needed to develop models with greater predictive
power, or that the effect of corporate governance on firm outcomes, if any, is in fact too

small to be detected even in large samples.

2. Causal models and out-of-sample predictive ability

2.1 Using prediction to test theories

Mixed findings on the relation between various corporate governance characteristics and
firm outcomes question the existence of strong causal mechanisms claimed in some studies.
Because understanding a phenomenon requires both causal explanation and prediction
(e.g., Watts, 2014; Yarkoni and Westfall, 2017; Hofman et al., 2021), we propose leveraging
out-of-sample predictive ability of corporate governance characteristics in assessing the
plausibility of these causal claims. Corporate governance research typically does not test
for predictive power of proposed causal models. It often assumes a model’s explanatory
power translates into its predictive power, which is not always the case (Shmueli, 2010).
The basic idea is that, if a relation between a corporate governance characteristic and an
outcome is causal, this characteristic should help predict the outcome out of sample by
making prediction of the outcome more accurate. In other words, causality should result

in out-of-sample predictive ability.



Prediction on out-of-sample data provides a harsher test than fitting many models
on in-sample data (Freedman, 1991; Hofman et al., 2021). Low out-of-sample predictive
ability of a model with good in-sample fit can be due to incompleteness of a theory or
the irreducible noise of an outcome. Fudenberg et al. (2022) introduce an idea of theory
“completeness,” which is related to ideas in Peysakhovich and Naecker (2017). They use
machine-learning-based prediction to isolate the irreducible error in an outcome and thus
assesses an upper bound on how well one can predict an outcome using a given set of
features. In our paper, the extent of predictive ability of machine-learning-based models
that use corporate governance features would provide an upper bound on an amount of
explainable variation in firm outcomes that can be achieved by the theory that uses these

features.

2.2 Omitting causal factors and prediction

While the idea of leveraging out-of-sample prediction in testing causal models is appealing,
prior research has established conditions under which an incomplete causal model predicts
better than a true (complete) causal model (e.g., Hagerty and Srinivasan, 1991; Wu et al.,
2007; Shmueli, 2010). This happens because prediction seeks to minimize the combination
of bias and estimation variance as often captured by mean-squared errors (MSE). As given
by Friedman et al. (2009), p.223, MSE or the expected prediction error equals the sum
of three elements: irreducible error, squared bias, and variance. The irreducible error is
the variance of the noise in the outcome. This error cannot be avoided no matter how
well the target function is estimated. The bias is the amount by which the average of the

estimated target function differs from the true mean of the target function. This bias is the
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result of misspecifying the statistical model, e.g., using the incomplete model instead of
the complete model. The variance is the variance of the estimated target function around
its mean. This variance is the result of using a sample to estimate the target function.

The comparison of the MSEs from a complete versus an incomplete model suggests
the following trade-offs (see Wu et al., 2007, for the linear case).* First, the omission of
a causal variable increases the bias but decreases the variance of model predictions. If
the omitted variable has little influence on the dependent variable causing only a small
bias when omitted, excluding it from the model may cause a substantial decrease in
the variance of predictions, so that the overall MSE also decreases, especially when the
noise in the dependent variable is large. That is, if addition of corporate governance
characteristics does not improve prediction errors, while the existence of a causal effect
cannot be completely ruled out, these corporate governance characteristics have a trivial
causal effect, if any. Second, there can be no loss in the predictive ability of the model
if most of the information contained in the omitted variables is already contained in the
included variables. This can happen when the causal effects of corporate governance are
mediated by firm characteristics or vice versa. Third, the inclusion of irrelevant variables
with zero effect on the dependent variable increases the variance and MSEs. That is, we
could also observe deterioration in prediction errors if corporate governance is irrelevant

for firm outcomes we consider.

“The complete set of conditions for the incomplete model to have lower MSE than the complete model is
in Wu et al. (2007), p. 389 and p.391: (1) the data are noisy, i.e., large irreducible noise; (2) the true absolute
values of effects of omitted variables are small; (3) high correlation between omitted and included predictors;
or (4) the sample size is small.

10



3. Data

We collect comprehensive data on over one hundred corporate governance characteris-
tics from Equilar, WhaleWisdom, and FactSet with firm characteristics from Compustat,
CRSP, and Audit Analytics. In addition to considering all governance features together, we
also split them into groups: institutional investor holdings, anti-takeover provisions, com-
pensation, board financial expertise, and board characteristics. The corporate governance
characteristics mostly come from prior literature, e.g., Bhojraj and Sengupta (2003), Larcker
et al. (2007), and Daines et al. (2010). We vary firm characteristics by the firm outcome
examined, drawing from the extant literature in each case. For restatements of financial
statements, we use Model 1 from Dechow et al. (2011). For class-action lawsuits, we use
prediction model from Rogers and Stocken (2005). For business failures, we use prediction
model from Campbell et al. (2008).> For stock returns, we use firm characteristics from the
five-factor model from Fama and French (2015). For operating performance, firm value,
and credit ratings, we use firm characteristics from Daines et al. (2010). Table A.1 provides
definitions of the variables.

Our sample covers data for 2001-2016 period. The sample starts in 2001 because Equilar
executive compensation and board characteristics coverage starts at that time. The sample
ends in 2016 to allow for the two to three years it takes for an error in financial statements
to be detected (Zakolyukina, 2018). Thus, our data set includes restatements revealed
in 2019, which is the last pre-COVID-19 year, making our data complete with respect to

pre-COVID-19 outcomes. For each firm outcome, we use the last three years of data as an

>Ogneva et al. (2020) provide details on computing the variables.
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out-of-sample test set and the remaining data from earlier periods as a training set.

The corporate governance sub-groups are from different data sources and are defined in
Table A.1. For institutional investor holdings in Table A.1, Panel A, we use WhaleWisdom®
data on Form 13F holdings. For anti-takeover provisions in Table A.1, Panel B, we use
FactSet’s SharkRepellent” data on takeover defenses. For executive compensation in Table
A.1, Panel C, board financial expertise in Panel D, and board characteristics in Panel
E, we use Equilar® data on executive compensation, directors” characteristics and board
committees’ composition.

Table 1 provides descriptive statistics for each of the corporate governance sub-groups.
These summary statistics are consistent with those reported in the prior literature. Our
largest sub-group is compensation of CEO and non-CEQO executives. This category includes
means, variances, and ratios of various compensation measures. The next largest category
is board characteristics with variables found to be important in the literature, e.g, number
of directors appointed after a CEO takes office, number of directors over 69 years old,
number of busy directors. The categories that follow are financial expertise of the board,
e.g., number of financial experts, number of directors on audit and finance committees,
anti-takeover provisions, e.g., the indicators for staggered board and poison pill, and
institutional investor holdings, e.g., institutional ownership and blockholder.

Table A.1 also defines outcomes and firm characteristics for each outcome. For firm
outcomes, data on restatements of financial statements, class-action lawsuits, and business

failures are from Audit Analytics, and return on assets, firm value, stock returns, credit

6See https:/ /whalewisdom.com/.
’See https:/ /go.factset.com/marketplace/catalog/product/ factset-corporate-governance.
8See https:/ /www.equilar.com/.
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ratings, and firm characteristics are from Compustat and CRSP. Table A.1, Panel F, pro-
vides details on firm characteristics included into the models for restatements of financial
statements. We consider a broad category of restatement events as implemented in Terry
et al. (2022) and based on Appendix 2 in Cheffers et al. (2014). These are restatements sur-
rounded by events pointing to potential irregularities. For instance, these events include
CEO or CFO dismissals resulting from internal investigations or suspected wrongdoing,
auditor changes related to SEC inquiry or management unreliability, or overlap between
the restated period and the violation period alleged by the Accounting and Auditing En-
forcement Releases (AAERs) from Dechow et al. (2011). We require these events to happen
within one year before or after the restatement. We also consider more severe restatement
irregularities as defined in Hennes et al. (2008). According to their criteria, we search all
of Audit Analytics restatement disclosure narratives for the words “fraud” or “irregular-
ity,” SEC or Department of Justice formal or informal investigations, or the discussion of
independent investigations by an audit committee or a special committee. After automatic
pre-screening for search terms, we read each relevant disclosure to make a final judgment
about whether that disclosure can be classified as an irregularity. For restatement-related
firm characteristics, we use Model 1 from Dechow et al. (2011), which includes accruals
from Richardson et al. (2005), soft assets, indicator for debt or equity issuance, and growth
in receivables, inventory, cash sales, and return on assets.

Table A.1, Panel G, provides details on firm characteristics included into the models
for class-action lawsuits. We create an indicator variable for a fiscal year overlapping
with a class-action period. For class-action-related firm characteristics, we use the model

from Rogers and Stocken (2005) that includes firm size, share turnover, market beta, stock
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returns, return volatility, skewness of daily returns, minimum of the daily returns over
the past 12-month period, indicators for bio-technology, computer hardware, computer
software, electronics, and retailing industries. Table A.1, Panel H, provides details on
firm characteristics included into the models for business failures. We define business
failure as a firm failing within the next 3 years for the failure outcomes from Ogneva et al.
(2020) such as bankruptcies and performance-related delistings. For failure-related firm
characteristics, we use the model from Campbell et al. (2008) as implemented in Ogneva
et al. (2020) that includes profit ratio, total liabilities to total assets, excess stock return,
return volatility, size, cash to total assets, market-to-book ratio, and stock price.

Table A.1, Panel I, provides details on firm characteristics included into the models for
return on assets. The only characteristics we include are lagged return on assets and the
logarithm of market value as in Daines et al. (2010). Table A.1, Panel J, provides details on
firm characteristics included into the models for firm value, that is, Tobin’s Q. Following
Daines et al. (2010), the only firm characteristic we include is lagged Tobin’s Q. Table A.1,
Panel K, provides details on firm characteristics included into the models for stock returns.
We include firm characteristics from the five-factor model from Fama and French (2015),
that is, the logarithm of market value, book-to-market ratio, operating profitability, and
investment. Table A.1, Panel L, provides details on firm characteristics included into the
models for credit ratings. The S&P credit rating is converted into numerical value following
Ashbaugh-Skaife et al. (2006). Investment grade debt is an indicator variable for the credit
rating at or above speculative grade BBB. Following Daines et al. (2010), we include the
logarithm of market value, book-to-market ratio, return on assets, leverage, market beta,

and stock return volatility computed over 12-month period.
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Table 1 reports descriptive statistics for corporate governance, firm outcomes, and
outcome-specific firm characteristics for the results reported in the main text of the pa-
per. Table IA.1 in Internet Appendix reports descriptive statistics for firm outcomes and
outcome-specific firm characteristics for the results reported in Internet Appendix. The
number of observations varies by firm-outcome groups because of the different require-

ments for the number of non-missing observations.

4. Prediction models

We use gradient boosting of regression trees (Freund and Schapire, 1997; Friedman, 2001)
to relate corporate governance features and firm characteristics in year ¢ to firm outcomes in
year t+1ort+3.° Boosting methods have proved remarkably successful in producing highly
accurate out-of-sample predictive performance by combining many relatively inaccurate
models such as regression trees (Schapire and Freund, 2012). A regression tree partitions
the feature space into a set of regions and uses the mean of the dependent variable as the
fitted value for each partition as depicted in Figure 1.1° For instance, a tree can split the
sample by CEO equity ownership and use the average operating performance in each region
as the estimate. The algorithm can further split these regions by, for instance, Board tenure.
The second split produces a regression tree with an interaction depth of two because both
CEO equity ownership and Board tenure define a region. This approach estimates a target
function by searching in the function space and is shown to provide a consistent estimate

when the boosting process is stopped early (Jiang, 2004; Zhang and Yu, 2005; Bartlett and

9We use gradient boosting of regression trees as implemented in the gbm3 R package by Ridgeway (2020).
0Strictly speaking, this is the approach that minimizes squared error; other loss functions will yield
different estimators, such as the median.
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Traskin, 2007).'1

As discussed in Section 10.7 of Friedman et al. (2009), trees are the best off-the-shelf
predictive algorithms because they are fast to construct, interpretable, invariant to strictly
monotone transformations of features, and immune to the effects of outliers in features.
Regression trees also perform internal feature selection and, as a result, are resistant to the
inclusion of irrelevant predictor features. Thus, when we include over a hundred corporate
governance features and firm characteristics, the algorithm tends to ignore features that
are irrelevant for predicting firm outcomes. However, a single tree is inaccurate and
a gradient boosted model often dramatically improves its accuracy while maintaining
desirable properties. The boosted tree model is essentially a weighted sum of trees that
minimizes a loss function. Each iteration adds a new tree that maximally improves the fit
to the data given the already existing model and its fit (Friedman, 2001). This procedure
divides the feature space with much higher granularity than a single tree. For firm
outcomes captured by indicator variables, we use AdaBoost exponential loss function.
For continuous firm outcomes, we use the squared-error loss function, a standard choice
for prediction problems with continuous outcomes.

The gradient boosting algorithm depends on three meta-parameters. The first meta-
parameter is the interaction depth of the regression trees, which is the number of splits
considered for each tree or the highest level of variable interactions allowed.? As the opti-
mal value of interaction depth is low in most problems (Friedman et al., 2009), we consider

values of 1, 2, 3, 5, and 7, and select the final value for each model using cross-validation.

Experiments and theoretical studies have shown that boosting methods can overfit in the limit of large
time or the number of rounds (e.g., Grove and Schuurmans, 1998; Jiang, 2004) and, to achieve consistency,
some regularization such as early stopping is necessary.

12A value of 1 implies an additive model, a value of 2 implies a model with up to two-way interactions, etc.
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The second meta-parameter is the shrinkage or learning rate. This meta-parameter con-
trols the contribution of each new tree that is added to the model, with smaller values
reducing over-fitting and thus improving out-of-sample performance (Friedman, 2001).
We set the shrinkage parameter to 0.01, which James et al. (2013, p.323) identifies as a
“typical value.” The third meta-parameter is the number of trees in the model. There is a
trade-off between shrinkage and the optimal number of trees in the model. Smaller values
of shrinkage require correspondingly larger values for the number of trees. We set the
maximum number of trees to 50,000. Because the algorithm starts with a single tree and
grows the model one tree at a time, this means we fit 50,000 trees with various interaction
depths and select the final value for the model using cross-validation.

Two parameters—the interaction depth of the regression trees and the number of trees—
are chosen by cross-validation in the training data. We set the cross-validation on a rolling
basis. For each year ¢ in the training data, we use all the data up to and including year ¢ to
estimate the model and then use the following year t +1 as the validation set, i.e., apply the
estimated model to the data from ¢ + 1 to compute the prediction error (validation error).
For instance, we estimate a model using data from 2001, and then apply the estimated
model to the data from 2002 to compute the prediction error. Next, we estimate a model
using combined data from 2001 and 2002, and then apply the estimated model to the data
from 2003 to compute the prediction error. We continue doing that until the last year in
the training sample that is also the last validation year. This process produces average
validation errors for each combination of the interaction depth and the number of trees in
the model. We then choose the simplest model with an average validation error within

0.001 of the smallest average validation error achieved by models with various numbers of
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tress and interaction depths. This process favors simpler models with a smaller number of

trees and lower interaction depths (e.g., Friedman et al., 2009; Kuhn and Johnson, 2013).

5. Results

After selecting the meta-parameters for each of the models on the training data, we apply
these models to each of the three test years from the end of the sample period. The meta-
parameters are thus fixed from the training data. However, we still allow the models to
learn from the most recent data available for a test year. For instance, data for restatements
of financial statements covers the period from 2001 to 2016. We use data from 2001
to 2012 for training and selection of meta-parameters and data from 2013 to 2015 for
the out-of-sample test period. For 2013 test data, we re-estimate the model using 2001-
2012 data (with meta-parameters from 2001-2012 training data) and apply it to 2013 test
data to compute test error. For 2014 test data, we re-estimate the model using 2001-
2013 data (again, with meta-parameters from 2001-2012 training data) and apply it to
2014 test data to compute test error. For 2015 test data, we re-estimate the model using
2001-2014 data (again, with meta-parameters from 2001-2012 training data) and apply
it to 2015 test data to compute test error. Importantly, the test-year data is not used in
meta-parameter selection or model re-estimation, and thus allows for a genuine out-of-
sample test of the model. For the outcomes measured by the indicator variables, we
compute the test error as In(1 + AdaBoost error). For the outcomes measured by the
continuous variables, we compute the test error as RMSE (Root Mean Squared Error).

By construction, both errors are positive with lower values corresponding to a better
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model, i.e., a model with better prediction accuracy. Because general patterns of results
are similar for different outcomes, we present the results for three outcomes—serious
financial-statement restatements, operating performance, and credit ratings—in the main

text of the paper and for the remaining outcomes in Internet Appendix.

5.1 Meta-parameter selection

Table 2 and Table IA.2 in Internet Appendix provide meta-parameters for the gradient
boosting machine (GBM) models selected on the training data by the cross-validation
procedure in Section 4. We chose the tree depth and the number of trees to minimize
cross-validation errors. We consider models that include firm and corporate governance
characteristics—both separately and together—to predict future outcomes att +1 and ¢ + 3.

The following general pattern emerges for all outcomes. The models that combine
firm and corporate governance characteristics or that only include corporate governance
are generally more complex. They have greater tree depth, i.e., include more complex
interaction terms, and have greater number of trees, i.e., include larger number of terms.
This increase in model complexity entails greater computational cost, as more complex
models take longer to estimate. Among different outcomes, models for S&P credit ratings
are the most complex. All models for S&P credit ratings have tree depth of 7, i.e., the highest
level we consider is 7-way interaction. The size of the model increases from 5,100 trees for
firm characteristics, to 20,650 trees for firm and corporate governance characteristics, and
to 40,850 for corporate governance alone.

However, this increase in complexity does not come with substantial reduction in cross-

validation errors. While adding corporate governance to the firm-characteristics-only
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models does often reduce the cross-validation errors, this reduction is not substantial.
By contrast, having corporate governance on its own, again, results in more complex but
less accurate models. For instance, for return on assets, the tree depth is 3, i.e., allows
for 3-way interactions, and the size of the model is 1,050 producing an error of 0.086 for
firm characteristics; the tree depth is 3 and the size of the model is 1,380 producing the
same error of 0.086 for firm and corporate governance characteristics combined; and the
tree depth is 7 and the size of the model is 42,700 producing the larger error of 0.138 for
corporate governance alone. The greater complexity of corporate-governance-only models
and the lack of substantial improvement in cross-validation errors suggests that GBM has
difficulty extracting informative signals about outcomes from these variables. This may be
because corporate governance is not as informative about outcomes as firm characteristics,

which weighs against a strong causal effect of corporate governance.

5.2 Out-of-sample predictive performance

Out-of-sample errors are reported separately for each test year in sub-panels of Tables
3-8 and Tables IA.3-IA.14 in Internet Appendix. We also report t-statistics values that
test for statistically significant differences in errors for each test year. With t-statistics, we
compare the model in the column to the model in the corresponding row. That is, the
value is positive when the model in the column is more accurate than the model in the
corresponding row, i.e., has lower error; the value is negative when the model in the column
is less accurate than the model in the corresponding row, i.e., has higher error. Base model
denotes an uninformed baseline that uses an average outcome in the estimation data for

prediction.
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For each outcome, there are two tables. The first table contrasts errors from models
that include firm characteristics alone and firm characteristics combined with corporate
governance. The second table contrasts errors from models that include firm characteristics
and corporate governance on their own. Out-of-sample prediction errors for more serious
financial-statement restatements are in Tables 34, for operating performance in Tables 5-6,
and for credit ratings in Tables 7-8. In Internet Appendix, out-of-sample prediction errors
for the broader definition of financial-statement restatements are in Tables IA.3-1A.4, for
class-action lawsuits in Tables IA.5-TA.6, for business failures in Tables IA.7-IA.8, for firm
value in Tables IA.9-IA.10, for stock returns in Tables IA.11-IA.12, and for investment-
grade debt in Tables IA.13-TA.14. All of the firm outcomes for year ¢t are computed as leads
t +1and t + 3. Considering a longer horizon ¢ + 3 allows us to capture the possibility of a
long-term effect of governance variables.

The following general pattern emerges. Models based on firm characteristics alone
outperform base models. The exception is stock returns for which none of the models
outperform the base model. Although adding corporate governance leads to a reduction
in errors, this reduction is not statistically significant. Thus, adding corporate governance
to the firm-characteristics-only models does not improve prediction accuracy. A similar
pattern emerges when considering firm and corporate governance characteristics on their
own. Corporate-governance-only models do not perform better than base models with
two exceptions of compensation and board characteristics and, typically, have larger errors.
Compensation and board characteristics often outperform base models but do not deliver
accuracy that is statistically different from the accuracy of firm-characteristics-only models,

e.g., financial restatement events, class-action lawsuits, business failures, or deliver perfor-
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mance that is statistically inferior to the firm-characteristics-only models, e.g., operating
performance, firm value, having an investment grade debt, and S&P credit rating.

The two outcomes that deviate from the general pattern in a meaningful way are S&P
credit rating in Tables 7-8 and having an investment grade debt in Tables IA.13-1A.14 in
Internet Appendix. For S&P credit ratings, adding compensation or board characteristics
improves the accuracy over firm-characteristics-only models in Table 7. As for Table 8§,
while the accuracy of corporate-governance-only models outperforms base models for all
corporate governance groups, these models are statistically inferior to firm-characteristics-
only models. Both of the outcomes come from S&P credit ratings data and, hence, these
accuracy patterns may simply capture properties of S&P’s credit-rating methodology. In-
deed, S&P discloses that it evaluates management and governance of a firm as part of its
credit rating process, and our machine learning models may simply recover this from the
data.!®

We identify two extreme possibilities to frame our results in possibly causal terms.
First, only firm characteristics (X;) drive firm outcomes (Y), while corporate governance
characteristics (X) are irrelevant and have no effect. Second, X; fully mediates the effect
of X, on Y. If Xj and X; are capturing the same information about Y, we should see
similar accuracy for the models that include X; and X5 on their own, which is not the
case. Instead, the two patterns are: (1) Xj-only models outperform base models but
X>-only models perform similarly to base models, e.g., financial restatement events, class-

action lawsuits, business failures and (2) X-only models outperform base models but

13See S&P Global Ratings disclosures “Criteria | Corporates | General: Corporate Methodology” and
“General Criteria: Methodology: Management And Governance Credit Factors For Corporate Entities Gen-
eral Criteria: Methodology: Management And Governance Credit Factors For Corporate Entities”.
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underperform Xi-only models, e.g., operating performance, firm value, having investment
grade debt, and S&P credit rating.

Based on this evidence, while we cannot say that corporate governance characteristics
X, are irrelevant, omitting them in predictive models produces no substantial loss of
prediction accuracy. In contrast, omitting firm characteristics X; triggers a substantial
accuracy loss. Because we find little evidence for X; and X, providing the same information
about Y, according to Section 2, the more likely interpretation of our results is that the
corporate governance features we consider collectively have a trivial causal effect relative
to firm characteristics, if any. Predictable variation in firm outcomes is mainly captured by

firm characteristics.

5.3 Variable importance

Figures 2—4 and Figures IA.1-IA.6 in Internet Appendix show the characteristics that
matter most for predicting firm outcomes in the models that include firm and all corporate
governance variables. We compute the relative importance of various characteristics as
the reduction of the error attributable to this predictor as described in Friedman (2001).
There is a mix of firm and corporate governance characteristics among the top predictors
for some outcomes, e.g., financial restatement events, class-action lawsuits, stock returns.
For other outcomes, top predictors comprise of firm characteristics alone, e.g., business
failures, return on assets, firm value, having investment grade debt, S&P credit rating.
The most important variables align well with the extant literature. For financial restate-
ment events, having financial experts on the board and executive compensation matters

(e.g., Cohen et al., 2014; Armstrong et al., 2010). For class-action lawsuits, the most impor-
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tant predictors are industry and size (e.g., Rogers and Stocken, 2005). For business failures,
the most important predictors are stock price and excess stock return (e.g., Campbell et al.,
2008). For return on assets and firm value, the most important predictor is their lagged
values (e.g., Larcker et al., 2007). Interestingly, for stock returns, growth in CEO equity
holdings is the most important predictor followed by book-to-market ratio. However,
these models do not outperform the uninformed baseline out-of-sample. For credit-rating
outcomes, industry and size are the most important predictors (e.g., Daines et al., 2010).
We also aggregate variable importance by firm and corporate governance groups. For
all outcomes except for stock returns, firm characteristics is the most important group of
predictors. It is often followed by compensation as the second tangibly relevant group of
predictors, which is consistent with a large literature on the importance of compensation
incentives (e.g., Edmans et al., 2017). These relative importance rankings corroborate
in-sample and out-of-sample results that firm characteristics contain the most predictive

variation for firm outcomes.

5.4 Alternative timing for the train-test split

Our main analyses uses the data in the beginning of the sample to train the models and the
end of the sample to test them over 2001-2016 period. This period includes the 2007-2008
financial crisis and the Dodd-Frank Wall Street Reform and Consumer Protection Act,
commonly referred to as Dodd-Frank, enacted on July 21, 2010. Here, we consider three
alternative time periods for the train-test split. The period before the financial crisis, that
is, training data covers 2001-2004 and test data uses 2005 with t + 1 outcomes from 2006

not being contaminated by 2007 events related to the 2007-2008 financial crisis. The period
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after the Dodd-Frank Act, that is, training data covers 2011-2014 and test data uses 2015
with ¢ + 1 outcomes from 2016. The reverse timing for the train-test split, that is, we use
2001-2003 as the test data and 2004-2016 as the training data.

Tables IA.15-1A.32 in Internet Appendix report the out-of-sample performance for ¢ +1
outcomes for these alternative specifications. The out-of-sample performance comparisons
are similar to our main results and the main conclusion applies: firm characteristics capture
most of the predictive variation with corporate governance characteristics, even when
better than the base model, performing similar or substantially worse on their own. We also
find deterioration of performance for firm-characteristics-based models for some outcomes.
For business failures, firm-characteristics-based models do not outperform the base model
in the pre-financial crisis period in Tables IA.21-IA.22. For financial restatements, firm-
characteristics-based models do not outperform the base model in the post-Dodd-Frank
and 2001-2003 periods in Tables IA.34-1A.36 and IA.52-1A.54. Both of these outcomes are
rare, and thus harder to predict, which results in the performance of firm-characteristics-

based models been sensitive to the length and timing of the training period.

6. Re-examination of Duchin et al. (2010)

While many papers have focused on associations between governance variables and firm
outcomes, ascribing causal explanations to these has not gone without criticism. A partic-
ular concern is the endogeneity of governance choices by firms (Hermalin and Weisbach,
2003). To address concerns about the endogenous selection of governance variables, re-

searchers have used various strategies to identify variation in corporate governance fea-
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tures that are plausibly random (or “as if” random) to draw more credible causal inferences
(Dunning, 2012).

To illustrate how our basic approach can be applied in such settings, we re-examine
the setting of Duchin et al. (2010) (“DMO”), which studies the effects of independent di-
rectors on various measures of firm performance. Acknowledging that board composition
is endogenous, DMO focus on instrumental variable regressions in their analysis. An in-
strumental variable is a variable that is unconfounded (i.e., random or “as if” random), is
a priori known almost certainly to have a causal effect on the treatment of interest, and that
satisfies the exclusion restriction, which requires that any causal effect of the instrument
“passes through” the treatment of interest (Imbens and Rubin, 2015, pp. 514-515).

In evaluating the impact of independent directors on subsequent firm performance,
DMO use compliance with the requirements of Sarbanes-Oxley Act of 2002 (SOX) prior to
the enactment of SOX as an instrument for changes in board composition once SOX came
into effect. DMO predict—and test for—differential effects of independent directors for
firms based on differences in measures of the cost to outsiders of acquiring information
about the firm (“information cost”). Consistent with their predictions, DMO find that
independent directors increase firm performance—measured using changes in operating
performance, changes in Tobin’s Q, and stock returns—when information cost is low, but
decrease firm performance when information cost is high.

We adapt and apply our machine-learning approach to the setting of DMO. Applying
the same gradient boosting machine (GBM) approach used elsewhere in this paper, we
examine whether the instrument used by DMO can be used to predict the firm outcomes

studied in DMO incremental to the control variables included by DMO.
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We focus on this “intention-to-treat” (ITT) analysis for a number of reasons. First, the
magnitude of the causal effect is not the focus of our analysis, merely whether evidence
of a causal effect can be observed in prediction models. Second, because the ITT is an
essential element of the estimated effect (Angrist and Pischke, 2008, pp. 162-5), evidence
of the existence (or absence) of ITT effects has strong probative value for the existence of
causal effects of the kind postulated by DMO. Finally, ITT analysis is much more easily
incorporated into our machine-learning based approach, especially as it facilitates robust
statistical inference in that setting, as discussed below.

Because credible identification strategies need to be carefully constructed by a research
team for a given research setting, we follow the research choices made by Duchin et al.
(2010) to the greatest extent possible modulo our use of machine-learning models in place
of the conventional instrumental variable analysis used by Duchin et al. (2010).1* We use
the same data, the same instrument, include the same exogenous variables as controls, and
the same outcome variables.!?

Before conducting our machine-learning analysis, we first confirm that we can replicate
the IV analysis of DMO as reported in Table 2 of Atanasov and Black (2021).!¢ Table 9 shows

that we can exactly replicate the regression coefficients reported in Table 2 of Atanasov and

41t is important to note that Atanasov and Black (2021) find evidence of severe covariate imbalance across
the two values of the Duchin et al. (2010) instrument. This suggests that the instrument is neither random
nor “as if” random undermining its value as an instrument. While Atanasov and Black (2021) attempt to
remedy the failure of randomization by using matching analyses, these will not deliver consistent estimates
of causal effects if there are unobservable confounders of precisely the kind leading to the use of IV analysis
in the first place. As such, we do not consider the modified approach of Atanasov and Black (2021) and
view our analysis as merely indicative of how machine-learning approach can be applied in setting where
credible identification strategies can be found.

1>We thank the authors of Duchin et al. (2010) for allowing us to use their data and thank the authors of
Atanasov and Black (2021) for sharing their code and the Duchin et al. (2010) data with us.

16We use the analysis of Atanasov and Black (2021) because this addresses “two technical errors” acknowl-
edged by the authors of Duchin et al. (2010). See the supplementary materials for Atanasov and Black (2021)
for discussion of the details.
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Black (2021).

We then conduct ITT or “reduced form” versions of the DMO analyses in which we use
the first-stage instruments in the second stage and omit the endogenous regressors. Table 10
presents the results of these ITT versions of the regressions reported in columns (3), (4),
and (5) of Table 9. We see that the results reported in Duchin et al. (2010) and in Table 9 have
close analogues in intention-to-treat analysis. The coefficients on the Noncomply dummy are
positive in all three regressions, consistent with the positive coefficients on Instrumented A
Indep reported in Table 9. The coefficients on the Noncomply dummy X InfoCost are negative
in all three regressions, consistent with the negative coefficients on Instrumented (A Indep
X InfoCost) reported in Table 9.

In addition to following the research choices made by Duchin et al. (2010), we depart
from our main analysis in two respects. First, because of the small sample size for this
analysis, we use 10-fold cross-validation analysis in place of a hold-out test sample, as used
in our main analysis. Kuhn and Johnson (2013, p. 77-78) say “there is a strong technical
case to be made against a single, independent test set” and “if the samples size is small, we
recommend repeated 10-fold cross-validation for several reasons: the bias and variance
properties are good and, given the sample size, the computational costs are not large.” The
risk with using cross-validation in place of a holdout sample is one of overstating the true
out-of-sample performance of the model, but the results of our analysis suggest this is not
a concern.

Second, we use a model that includes just industry dummies as our baseline model.
The DMO analysis includes 48 Fama-French industry dummies and we include industry

dummies in the feature set to maintain the parallel. However, a complication in our
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analysis is that we need to make sure that data on all industries are available in all folds.
To ensure this, we aggregate firms in Fama-French 48-industry groups with fewer than 10
observations into a single “other” industry.

Cross-validation MSEs for the fitted models for each of three different outcomes con-
sidered in DMO are presented in Table 11. The Base MSE column presents MSEs from the
baseline model. The MSE without IV column presents MSEs from applying GBM with just
the controls from DMO (including the industry dummies and the information index) with-
out the exogenous instrument, Noncomply dummy. The MSE with IV column presents MSEs
from applying GBM with both the controls from DMO and the exogenous instrument,
Noncomply dummy. The MSE decrease column presents the difference between the value in
MSE without IV column and that in the MSE with IV column. The p-value column presents
p-values derived using randomization inference. Because the exogenous instrument is ran-
dom (or “as if” random), we can evaluate the distribution of MSE decrease under the null
hypothesis by randomly reshuffling the Noncomply dummy and running the GBM model
with the resulting data. Doing this 999 times gives us an empirical distribution of MSE
decrease generated under the null hypothesis. Adding the observed value of MSE decrease
to these allows us to measure the p-value to three decimal places. Because we predict a
positive value in MSE decrease, we use a one-sided p-value in this column. In the context
of instrumental variables, randomization inference offers a number of benefits compared
to more conventional statistical tests based on asymptotic properties of estimators. First,
randomization inference does not suffer from the well-known problems with inference
when using weak instruments (Bound et al., 1995; Imbens and Rosenbaum, 2005). In the

context of randomization inference using instruments, Rosenbaum (2020, p. 153) points

29



out that “the intention-to-treat analysis will reject Fisher’s hypothesis of no treatment effect
if and only if the instrumental variable (IV) analysis rejects Hp : = 0.” With p-values of
0.200, 0.632, and 0.502 for AIn(Q), AROA, and Mean return, respectively, we do not find

evidence that exogenous shocks to board independence predict firm performance.

7. Conclusion

In this paper, we use machine learning to re-examine the broad research questions of
measurement, prediction, and causation in corporate governance. We evaluate predictive
ability of over a hundred corporate governance characteristics for important firm outcomes.
We discover that adding corporate governance does not improve the models” predictive
accuracy beyond the predictive accuracy captured by firm characteristics. While the mod-
els become more complex, firm characteristics still dominate in terms of their relative
importance for prediction.

Our paper contributes to the literature examining the predictive ability of corporate gov-
ernance measures, providing additional evidence on the difficulty of constructing mean-
ingful and useful measures of corporate governance documented by Larcker et al. (2007)
and Daines et al. (2010). Our results suggest that these findings generalize beyond the
specific governance measures that those papers study.

We tentatively suggest that the failure of corporate governance measures to predict the
kinds of outcomes studied in prior research may have implications for the existence and
magnitude of causal effects of corporate governance on firm outcomes. Some predictive

ability is a necessary condition for a causal effect to exist (Freedman, 1991; Manski, 2009;
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Watts, 2014).

While underspecified models can predict better than fully specified causal models
(Hagerty and Srinivasan, 1991; Wu et al., 2007), it seems unlikely that an underspecified
model with better predictive ability would omit all of the (causal) corporate governance
features as our models generally do, suggesting that such a fully specified model is unlikely.

Our results seem consistent with corporate governance theories offering little in terms of
explanatory power for firm outcomes. Perhaps further work is needed to develop models
and measures with greater predictive power. Alternatively, it may be that the effects of
corporate governance on firm outcomes, if any, are too small to be detected even in large

samples.
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Figure 1: Regression tree

This figure provides a hypothetical example of a regression tree with 2-way interactions between CEO equity
ownership and Board tenure for Return on assets outcome. The final predictions are denoted by R1, R, and
R3. The right figure shows the actual tree. The left figure shows the split of the space of characteristics that

corresponds to that tree.
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Figure 2: Variable importance for restatements as in Hennes et al. (2008)

This figure depicts the relative importance of the top characteristics for predicting restatements as in Hennes
etal. (2008) att +1 and ¢ +3 from the model that includes both firm and corporate governance characteristics.
For each characteristic (left panels), importance is computed as the reduction of the error attributable to this
characteristic as described in Friedman (2001) using the estimation sample. For each group of characteristics
(right panels), importance is computed as the sum of individual importance values of characteristics in that
group. Firm denotes firm characteristics. Inst. hold. denotes institutional investor holdings. Anti-takeover
denotes anti-takeover provisions. Comp. denotes executive compensation. Fin. expert denotes board’s
financial expertise. Board denotes board characteristics.
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(b) Restatements as in Hennes et al. (2008) ¢ + 3
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Figure 3: Variable importance for operating performance

This figure depicts the relative importance of the top characteristics for predicting operating performance
att + 1 and t + 3 from the model that includes both firm and corporate governance characteristics. For
each characteristic (left panels), importance is computed as the reduction of the error attributable to this
characteristic as described in Friedman (2001) using the estimation sample. For each group of characteristics
(right panels), importance is computed as the sum of individual importance values of characteristics in that
group. Firm denotes firm characteristics. Inst. hold. denotes institutional investor holdings. Anti-takeover
denotes anti-takeover provisions. Comp. denotes executive compensation. Fin. expert denotes board’s
financial expertise. Board denotes board characteristics.
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Figure 4: Variable importance for S&P credit rating

This figure depicts the relative importance of the top characteristics for predicting S&P credit rating at f +1 and
t +3 from the model that includes both firm and corporate governance characteristics. For each characteristic
(left panels), importance is computed as the reduction of the error attributable to this characteristic as
described in Friedman (2001) using the estimation sample. For each group of characteristics (right panels),
importance is computed as the sum of individual importance values of characteristics in that group. Firm
denotes firm characteristics. Inst. hold. denotes institutional investor holdings. Anti-takeover denotes anti-
takeover provisions. Comp. denotes executive compensation. Fin. expert denotes board’s financial expertise.
Board denotes board characteristics.
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(b) S&P credit rating t + 3
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Table 1: Summary statistics

This table provides descriptive statistics for the variables used in the analyses defined in Table A.1. All
variables are winsorized at the 1st and 99th percentiles.

Panel A: Corporate governance: Institutional investor holdings

Variable Obs. Mean SD Q25 Median Q75
Instit. ownership 50, 439 60.689 27.347 39530  65.211 83.352
Instit. ownership., top 5 50, 439 27.107 12.639 18.990  26.201 33.915
Blockholder 50, 439 18.562 15428  6.461 15.796  27.407
Panel B: Corporate governance: Anti-takeover provisions
Variable Obs. Mean SD Q25 Median Q75
PA, OH, WI, MA incorporated 50, 439 0.073 0.261  0.000 0.000  0.000
Staggered board 50, 439 0.462 0.499  0.000 0.000  1.000
Unequal voting rights 50,439 0.089 0.285  0.000 0.000  0.000
Poison pill 50, 439 0.267 0.442  0.000 0.000  1.000
Supermajority to amend charter 50,439 0.211 0.408  0.000 0.000  0.000
Supermajority to approve mergers 50,439 0.409 0.492  0.000 0.000  1.000
Supermajority to amend bylaws 50,439 0.550 0.498  0.000 1.000  1.000
Panel C: Corporate governance: Executive compensation
Variable Obs. Mean SD Q25 Median Q75
Shares held (%), CEO 50, 439 4.193 9.618 0.174 0.651 2.716
Total shares held (%), exec. 50,439 2.440 6.697  0.161 0.484  1.417
Avg. shares held (%), exec. 50, 439 0.640 1.735  0.040 0.122  0.379
Var. shares held (%), exec. 50,439 8.799 48.510 0.001 0.007  0.100
Stock awards, CEO 50, 439 1.029 1.966  0.000 0.089  1.146
Avg. stock awards, exec. 50,439 0.330 0.613 0.000 0.069 0.380
Var. stock awards, exec. 50,439 0.197 0.817 0.000 0.001 0.033
Stock awards, exec., ratio 50,439 0.233 0.389 0.000 0.017 0.426
Cash compensation, CEO 50,439 1.511 1.596 0.545 0.962 1.853
Avg. cash compensation, exec. 50,439 0.689 0.605 0.319 0.489  0.822
Avg. cash compensation, exec. 50,439 0.240 0.938  0.004 0.016  0.075
Cash compensation, exec., ratio 50,439 0.312 0.278 0.132 0.267 0.466
Value option grants, CEO 50,439 0.964 2.110  0.000 0.035  0.920
Avg. value option grants, exec. 50,439 0.295 0.592  0.000 0.054  0.308
Var. value option grants, exec. 50,439 0.253 1.110  0.000 0.001  0.033
Value option grants, exec., ratio 50,439 0.214 0.400 0.000 0.000 0.374
Value vested options, CEO 50, 439 5.722 13.009  0.027 0.959  4.799
Avg. value vested options, exec. 50,439 1.132 2295  0.044 0.293  1.082
Var. value vested options, exec. 50,439 6.722 30.715 0.001 0.064 0.905
Value vested options, exec., ratio 50,439 0.558 0.762 0.000 0.335 1.030
Value non-vested options, CEO 50,439 1.684 3.816 0.000 0.187 1.469
Avg. value non-vested options, exec. 50,439 0.474 1.000  0.000 0.096  0.453
Var. value non-vested options, exec. 50, 439 0.682 3.072 0.000 0.004 0.088
Value non-vested options, exec., ratio 50,439 0.289 0.489 0.000 0.070 0.521
Value shares held, CEO 50, 439 40.777 128.583  1.269 5.430 19.999
Avg. value shares held, exec. 50,439 5.634 18.388  0.232 0.927 2.953
Var. value shares held, exec. 50,439 1,185.883 7,857.835 0.035 0.543 6.749
Value shares held, exec., ratio 50, 439 1.133 1.365 0.302 0.958 1.711
Delta option grants, CEO 50, 439 0.016 0.035  0.000 0.001  0.015
Avg. delta option grants, exec. 50,439 0.005 0.010  0.000 0.001  0.005
Var. delta option grants, exec. 50,439 0.000 0.000  0.000 0.000  0.000
Delta option grants, exec., ratio 50,439 0.011 0.025 0.000 0.000 0.010
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Table 1: —Continued

Variable Obs. Mean SD Q25 Median Q75
Delta vested options, CEO 50,439 0.093 0.206  0.001 0.017  0.079
Avg. delta vested options, exec. 50,439 0.019 0.038  0.001 0.005 0.018
Var. delta vested options, exec. 50,439 0.002 0.007 0.000 0.000 0.000
Delta vested options, exec., ratio 50,439 0.058 0.122 0.000 0.010 0.057
Delta non-vested options, CEO 50,439 0.027 0.062 0.000 0.003 0.024
Avg. delta non-vested options, exec. 50,439 0.008 0.016  0.000 0.002  0.007
Var. delta non-vested options, exec. 50,439 0.000 0.001 0.000 0.000 0.000
Delta non-vested options, exec., ratio 50,439 0.018 0.043 0.000 0.001 0.016
Delta shares held, CEO 50,439 1.895 5.468  0.085 0.293  1.027
Avg. delta shares held, exec. 50,439 0.260 0.782 0.016 0.051 0.144
Var. delta shares held, exec. 50,439 2.103 12.957 0.000 0.002 0.017
Delta shares held, exec., ratio 50,439 0.408 0.703 0.035 0.171 0.530
Vega option grants, CEO 50,439 0.015 0.032  0.000 0.000  0.013
Avg. vega option grants, exec. 50,439 0.004 0.009  0.000 0.001  0.004
Var. vega option grants, exec. 50,439 0.000 0.000  0.000 0.000  0.000
Vega option grants, exec., ratio 50,439 0.010 0.023  0.000 0.000  0.008
Vega vested options, CEO 50,439 0.034 0.073 0.000 0.007 0.030
Avg. vega vested options, exec. 50,439 0.008 0.016  0.000 0.002  0.008
Var. vega vested options, exec. 50,439 0.000 0.001 0.000 0.000 0.000
Vega vested options, exec., ratio 50,439 0.024 0.052 0.000 0.004 0.022
Vega non-vested options, CEO 50,439 0.018 0.040  0.000 0.002  0.015
Avg. vega non-vested options, exec. 50,439 0.005 0.010  0.000 0.001  0.005
Var. vega non-vested options, exec. 50,439 0.000 0.000  0.000 0.000  0.000
Vega non-vested options, exec., ratio 50,439 0.012 0.029 0.000 0.001 0.010
Value all equity, CEO 50,439 50.306 135.823  3.425  10.825 33.457
Avg. value all equity, exec. 50,439 7.739 20.233  0.740 2.081 5.611
Var. value all equity, exec. 50,439 1,295.718 8,365.271  0.189 1.927 18.415
Value all equity, exec., ratio 50,439 1.255 1.141 0.593 1.153 1.760
Delta all equity, CEO 50,439 2.050 5528  0.147 0.433 1.276
Avg. delta all equity, exec. 50,439 0.294 0.798  0.030 0.076  0.192
Var. delta all equity, exec. 50,439 2.137 13.058  0.000 0.003  0.026
Delta all equity, exec., ratio 50,439 0.455 0.691  0.068 0.238  0.608
Vega all equity, CEO 50,439 0.068 0.130  0.002 0.019  0.067
Avg. vega all equity, exec. 50,439 0.017 0.031  0.001 0.006  0.018
Var. vega all equity, exec. 50,439 0.001 0.002  0.000 0.000  0.000
Vega all equity, exec., ratio 50,439 0.043 0.080  0.001 0.011  0.046
Value vested equity, CEO 50,439 47.243 133.725  2.542 8.841 28.917
Avg. value vested equity, exec. 50,439 6.884 19.537  0.521 1.590  4.493
Var. value vested equity, exec. 50,439 1,266.779 §8,240.708 0.133 1.443 14.496
Value vested equity, exec., ratio 50,439 1.237 1.238 0.509 1.123 1.804
Delta vested equity, CEO 50,439 2.001 5518  0.124 0.386  1.196
Avg. delta vested equity, exec. 50,439 0.281 0.792  0.024 0.066  0.173
Var. delta vested equity, exec. 50,439 2.130 13.045  0.000 0.002  0.023
Delta vested equity, exec., ratio 50,439 0.442 0.697  0.057 0.218  0.589
Vega vested equity, CEO 50,439 0.034 0.073  0.000 0.007  0.030
Avg. vega vested equity, exec. 50,439 0.008 0.016  0.000 0.002  0.008
Var. vega vested equity, exec. 50,439 0.000 0.001 0.000 0.000  0.000
Vega vested equity, exec., ratio 50,439 0.024 0.052  0.000 0.004 0.022
Value all equity log-growth, CEO 50,439 0.000 0.000 -0.000 0.000  0.000
Avg. value all equity log-growth, exec. 50,439 0.000 0.000 -0.000 0.000  0.000
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Table 1: —Continued

Variable Obs. Mean SD Q25 Median Q75
Var. value all equity log-growth, exec. 50,439 0.000 0.000  0.000 0.000  0.000
Value all equity log-growth, exec., ratio 50,439 -0.000 0.000 -0.000  -0.000  0.000
Delta all equity log-growth, CEO 50,439 0.000 0.000 -0.000 0.000  0.000
Avg. delta all equity log-growth, exec. 50,439 0.000 0.000 —0.000 0.000  0.000
Var. delta all equity log-growth, exec. 50,439 0.000 0.000  0.000 0.000  0.000
Delta all equity log-growth, exec., ratio 50,439 —0.000 0.000 -0.000 —-0.000  0.000
Vega all equity log-growth, CEO 50,439 0.000 0.000 -0.000 0.000  0.000
Avg. vega all equity log-growth, exec. 50,439 0.000 0.000 -0.000 0.000  0.000
Var. vega all equity log-growth, exec. 50,439 0.000 0.000  0.000 0.000  0.000
Vega all equity log-growth, exec., ratio 50,439 —0.000 0.000 —0.000 0.000  0.000
Panel D: Corporate governance: Board’s financial expertise
Variable Obs. Mean SD Q25 Median Q75
Num. financial experts 50,439 1.498 1.106  1.000 1.000  2.000
Financial experts (%) 50, 439 18.258  13.146 11.111  14.286 25.000
Num. audit insiders 50, 439 0.000 0.000  0.000 0.000  0.000
Audit insiders (%) 50,439 0.000 0.000  0.000 0.000  0.000
Num. finance insiders 50,439 0.067 0.298  0.000 0.000  0.000
Finance insiders (%) 50,439 1.493 6.702  0.000 0.000  0.000
Num. audit directors 50, 439 3.609 0.936  3.000 3.000  4.000
Audit directors (%) 50, 439 44179 11978 36.364  42.857 50.000
Num. finance directors 50,439 0.605 1.564 0.000 0.000 0.000
Finance directors (%) 50, 439 6.100 15.567  0.000 0.000  0.000
Panel E: Corporate governance: Board characteristics
Variable Obs. Mean SD Q25 Median Q75
Num. post-CEO directors 50, 439 4.049 2.699  2.000 4.000  6.000
Post-CEO directors (%) 50,439 48.176  29.686 22.222 50.000 77.778
Num. over 69 directors 50,439 1.054 1.235 0.000 1.000 2.000
Over 69 directors (%) 50,439 12.433  14.385  0.000  10.000 20.000
Avg. director age 50,439 59.039 4.644 56.167  59.333 62.143
Num. busy directors 50,439 1.298 1.492  0.000 1.000  2.000
Busy directors (%) 50,439 14.625 15.845  0.000  12.500 25.000
Num. directors 50,439 8.515 2.342 7.000 8.000 10.000
CEO Chairman of the board 50,439 0.483 0.500  0.000 0.000  1.000
Num. CEO directors 50,439 0.300 0.617  0.000 0.000  0.000
CEO directors (%) 50, 439 3.304 6.668  0.000 0.000  0.000
Num. outsider directors 50,439 6.211 2.307 4.000 6.000 8.000
Outsider directors (%) 50,439 72.426 15438 62.500 75.000 85.714
Num. insider directors 50,439 1.527 0.855 1.000 1.000 2.000
Insider directors (%) 50,439 18.693  10.120 11.111  14.286 25.000
Num. affiliate directors 50, 439 0.766 1.122 0.000 0.000  1.000
Affiliate directors (%) 50, 439 8.782  12.542  0.000 0.000 14.286
Board tenure 50,439 9.156 4.348 5.967 8.700 11.831
Female directors (%) 50,439 9.792  10.097  0.000  10.000 16.670
Total equity, director 50,439 10.407  23.424 0.312 1.510 9.080
Avg. equity, director 50,439 1.488 3.333  0.043 0.218  1.263
Var. total equity, director 50,439 36.601 137.272  0.002 0.088  5.466
Num. nomination insiders 50,439 0.014 0.119 0.000 0.000 0.000
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Table 1: —Continued

Variable Obs. Mean SD Q25 Median Q75
Nomination insiders (%) 50,439 1.447 11.943 0.000 0.000 0.000
Num. compensation insiders 50,439 0.028 0.165 0.000 0.000 0.000
Compensation insiders (%) 50,439 0.814 4.886 0.000 0.000 0.000
Num. compliance insiders 50,439 0.000 0.000  0.000 0.000 0.000
Compliance insiders (%) 50, 439 0.000 0.000  0.000 0.000 0.000
Num. governance insiders 50,439 0.023 0.149 0.000 0.000 0.000
Governance insiders (%) 50, 439 0.634 4.285 0.000 0.000 0.000
Num. nomination directors 50,439 0.014 0.119 0.000 0.000 0.000
Nomination directors (%) 50,439 0.167 1.397 0.000 0.000 0.000
Num. compensation directors 50,439 3.512 1.067  3.000 3.000 4.000
Compensation directors (%) 50, 439 42.864 13.425 33.333  42.857  50.000
Num. compliance directors 50,439 0.130 0.661 0.000 0.000 0.000
Compliance directors (%) 50,439 1.406 7.113 0.000 0.000 0.000
Num. governance directors 50,439 2.855 1.839  2.000 3.000 4.000
Governance directors (%) 50,439 34.281 22.231 23.077  37.500  50.000
Avg. value shares held, director 50,439 14.629 47.516 0.410 1.373 6.111
Var. value shares held, director 50,439 9,371.180 54,117.210 0.153 3.309 126.970
Value shares held, director, ratio 50,439 0.759 1.713 -0.113 0.780 1.804
Panel F: Outcome group: Restatements of financial statements
Variable Obs. Mean SD Q25 Median Q75
Restatements as in Hennes et al. (2008) ;41 44,391 0.018 0.134 0.000 0.000 0.000
Restatements as in Hennes et al. (2008) ;13 40,014 0.012 0.108 0.000 0.000 0.000
RSST accruals 44,391 0.033 0.196 -0.029 0.016 0.079
Receivables growth 44,391 0.015 0.054 -0.006 0.006 0.029
Inventory growth 44,391 0.005 0.031 -0.001 0.000 0.009
Soft assets 44,391 0.578 0.271 0.365 0.607 0.811
Cash sales growth 44,391 0.055 0.205 -0.024 0.038 0.134
Return on assets, growth 44,391 0.001 0.134 -0.025 0.000 0.023
Issuance 44,391 0.925 0.264 1.000 1.000 1.000
Panel G: Outcome group: Return on assets
Variable Obs. Mean SD Q25 Median Q75
Return on assets, adj. ¢41 47,866 0.018 0.170 -0.020 0.011 0.076
Return on assets, adj. 143 43,113 0.021 0.169 -0.018 0.011 0.074
Log market value 47,866 6.607 1.751 5.389 6.526 7.765
Return on assets, adj. 47,866 0.019 0.169 -0.019 0.012 0.079
Panel H: Outcome group: Credit ratings
Variable Obs. Mean SD Q25 Median Q75
S&P credit rating ;.41 16,962 3.466 1.086 3.000 3.917 4.000
S&P credit rating ;43 13,339 3.515 1.083 3.000 4.000 4.000
Log market value 16,962 7.955 1.507 6.951 7.920 9.002
Book-to-market 16,962 0.554 0.426 0.276 0.473 0.720
Return on assets 16,962 0.080 0.073 0.038 0.072 0.116
Leverage 16,962 0.337 0.205 0.190 0.314 0.455
Beta 16,962 1.126 0.489 0.786 1.059 1.402
Volatility, 12-month 16,962 0.391 0.224 0.238 0.327 0.468
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Table 9: Instrumental variable estimation for audit committee independence

This table replicates the main result in Duchin et al. (2010) as reproduced by Atanasov and Black (2021) using
data from Duchin et al. (2010). These are the estimates from regressing firm performance during 2000-2005
on the change in the percentage of independent directors. The columns correspond to columns (1), (2), (5), (6),
(7) of Table 2 in Atanasov and Black (2021). Columns (1) and (2) report the first-stage results using Noncomply
dummy and Noncomply dummy X InfoCost as instruments for Alndep and Alndep X InfoCost. Columns (5)—(7)
report the second-stage results. Reported first-stage regressions are for sample with Aln(Q) as an outcome
variable. Noncomply dummy is a dummy for a firm being not in compliance with SOX in 2000, using data from
2000. InfoCost is an information cost index that averages a firm’s percentile ranking in the sample according
to the number of analysts who posted forecasts about the firm in a given year (the reverse ranking is used),
the dispersion of analyst forecasts (i.e., the standard deviation of earnings forecasts across analysts prior to
a quarterly earnings announcement, normalized by the firm’s total book assets and averaged across four
quarters in a given year), and the analyst forecast error (i.e., the absolute difference between the mean analyst
earnings forecast prior to a quarterly earnings announcement and the actual earnings, normalized by the
firm’s total book assets and averaged across four quarters in a given year). The index is scaled to range from
zero (low) to one (high). Board size is the number of directors on the board. Book leverage is debt divided by
book assets. Age is the number of years since the firm’s first appearance on Compustat with valid asset data.
Market cap is the logarithm of the market value of equity. Indep is the percentage of independent directors.
Alndep is the change in Indep between fiscal years 2000 and 2005, i.e., Alndep = Indepaoos - Indepaooo. AROA is
the change in return on assets (%) between fiscal years 2000 and 2005. Aln(Q) is the change in the logarithm
of Tobin’s Q between fiscal years 2000 and 2005. Mean return is the average monthly returns (%) from the end
of fiscal year 2000 to the end of fiscal year 2005. All variables are winsorized at the 1st and 99th percentiles.
All regressions include 48 Fama-French industry dummies. The standard errors, with industry clusters, are
in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.

Alndep Alndep x InfoCost ~ AROA AlIn(Q)  Mean return

(1) ) ©) 4) (5)

Noncomply dummy 10.490" -0.299

(3.160) (1.360)
InfoCost —4.025 3.480 -0914  -28.171 0.049

(4.486) (2.393) (3.194) (15.140) (0.464)
Board size -0.127 -0.122 -0.039 1.060 -0.014

(0.194) (0.100) (0.146) (0.723) (0.020)
Book leverage 0.237 0.044 0.940™ 4.835™ 0.029

(0.426) (0.252) (0.358) (0.842) (0.061)
Age -0.073" -0.015 0.021 0.617* 0.006

(0.037) (0.018) (0.022) (0.127) (0.004)
Market cap 0.191 0.076 —0.456"* —15.263"" —0.390"

(0.238) (0.134) (0.151) (1.972) (0.046)
Noncomply dummy x InfoCost 2.869 12.482*

(6.060) (3.482)
Instrumented A Indep 0.234 1.025 0.063"

(0.139) (0.637) (0.020)
Instrumented(AIndep x InfoCost) -0.507* —2.758* -0.116™
(0.300) (1.305) (0.041)

Observations 905 905 897 905 805
R? 0.205 0.219 0.097 0.370 0.247
Adjusted R? 0.155 0.170 0.040 0.331 0.195
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Table 10: Intention-to-treat effects

This table presents intention-to-treat equivalents for columns (3)—(5) in Table 9. Reported first-stage regres-
sions are for sample with A In(Q) as an outcome variable. The variables are defined in Table 9. All regressions
include 48 Fama-French industry dummies. The standard errors, with industry clusters, are in parentheses.
*, *#* and *** denote significance at the 10%, 5%, and 1% level, respectively.

AROA Aln(Q) Mean return

1) (2) (3)
Board size -0.004 1.266* -0.005
(0.137) (0.723) (0.020)
Book leverage 0.973 4.956™ 0.042
(0.345) (0.652) (0.062)
Age 0.011 0.584" 0.003
(0.021) (0.142) (0.003)
Market cap -0.457"  =15.277* —-0.388"
(0.144) (2.176) (0.049)
Noncomply dummy 2.573" 11.575* 0.613™
(1.422) (6.225) (0.197)
InfoCost -3.639" —41.892™ —-0.660™
(2.112) (8.435) (0.279)
Noncomply dummy X InfoCost —-5.596*  —31.487" -1.109*
(2.973) (12.144) (0.420)
Observations 897 905 805
R? 0.139 0.414 0.365
Adjusted R? 0.085 0.378 0.321
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Table 11: Mean cross-validation errors

This table reports mean cross-validation errors for the intention-to-treat analyses in Table 10. Base MSE
is mean cross-validation error for the model that includes only 48 Fama-French industry dummies. MSE
without IV is mean cross-validation error for the model that includes control variables, industry dummies,
and InfoCost, i.e., without the exogenous shifter Noncomply dummy that is pre-SOX non-compliance with SOX.
MSE with IV is mean cross-validation error for the model that adds the exogenous shifter Noncomply dummy
to the model above. MSE decrease is the difference between MSE without IV and MSE with IV. p-value is
p-value derived using randomization inference discussed in Section 6.

Y Base MSE ~MSE without IV MSE withIV ~ MSE decrease p-value
AIn(Q) 1905.784 1285.532 1280.694 4.838 0.200
AROA 60.229 56.418 56.538 -0.120 0.632
Mean return 1.304 0.978 0.978 0.000 0.502
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